Dictyate

Last updated

The dictyate or dictyotene [1] is a prolonged resting phase in oogenesis. It occurs in the stage of meiotic prophase I [2] in ootidogenesis. It starts late in fetal life [2] and is terminated shortly before ovulation by the LH surge. [3] Thus, although the majority of oocytes are produced in female fetuses before birth, these pre-eggs remain arrested in the dictyate stage until puberty commences and the cells complete ootidogenesis.

Contents

In both mouse and human, oocyte DNA of older individuals has substantially more double-strand breaks than that of younger individuals. [4]

The dictyate appears to be an adaptation for efficiently removing damages in germ line DNA by homologous recombinational repair. [5] Prophase arrested oocytes have a high capability for efficient repair of DNA damages. [5] DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant of fertility. [5]

Translation halt

There are a lot of mRNAs that have been transcribed but not translated during dictyate. [6] Shortly before ovulation, the oocyte of interest activates these mRNA strains.

Biochemistry mechanism

Translation of mRNA in dictyate is partly explained by molecules binding to sites on the mRNA strain, which results in that initiation factors of translation can not bind to that site. Two such molecules, that impedes initiation factors, are CPEB and maskin, which bind to CPE (cytoplasmic polyadenylation element). When these two molecules remain together, then maskin binds the initiation factor eIF-4E, [6] and thus eIF4E can no longer interact with the other initiation factors [7] and no translation occurs. On the other hand, dissolution of the CPEB/maskin complex leads to eIF-4E binding to the initiation factor eIF-4G, [6] and thus translation starts, which contributes to the end of dictyate and further maturation of the oocyte.

See also

Related Research Articles

<span class="mw-page-title-main">Meiosis</span> Cell division producing haploid gametes

Meiosis (; from Ancient Greek μείωσις 'lessening', is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one copy of each chromosome. Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and a female will fuse to create a zygote, a cell with two copies of each chromosome again.

<span class="mw-page-title-main">Ovary</span> Female reproductive organ that produces egg cells

The ovary is a gonad in the female reproductive system that produces ova. When an ovum is released, this travels through the fallopian tube/oviduct into the uterus. There is an ovary found on the left and the right side of the body. The ovaries also secrete hormones that play a role in the menstrual cycle and fertility. The ovary progresses through many stages beginning in the prenatal period through menopause. It is also an endocrine gland because of the various hormones that it secretes.

<span class="mw-page-title-main">Prophase</span> First phase of cell division in both mitosis and meiosis

Prophase is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus.

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins produce messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).

<span class="mw-page-title-main">Germ cell</span> Gamete-producing cell

A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm. Unlike animals, plants do not have germ cells designated in early development. Instead, germ cells can arise from somatic cells in the adult, such as the floral meristem of flowering plants.

An oocyte, oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female germ cells produce a primordial germ cell (PGC), which then undergoes mitosis, forming oogonia. During oogenesis, the oogonia become primary oocytes. An oocyte is a form of genetic material that can be collected for cryoconservation.

<span class="mw-page-title-main">Oogenesis</span> Egg cell production process

Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.

<span class="mw-page-title-main">Ovarian follicle</span> Structure containing a single egg cell

An ovarian follicle is a roughly spheroid cellular aggregation set found in the ovaries. It secretes hormones that influence stages of the menstrual cycle. At the time of puberty, women have approximately 200,000 to 300,000 follicles, each with the potential to release an egg cell (ovum) at ovulation for fertilization. These eggs are developed once every menstrual cycle with around 450–500 being ovulated during a woman's reproductive lifetime.

<span class="mw-page-title-main">Folliculogenesis</span> Process of maturation of primordial follicles

In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains an immature oocyte. Folliculogenesis describes the progression of a number of small primordial follicles into large preovulatory follicles that occurs in part during the menstrual cycle.

An oogonium is a small diploid cell which, upon maturation, forms a primordial follicle in a female fetus or the female gametangium of certain thallophytes.

In biology, reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA methylation, during mammalian development or in cell culture. Such control is also often associated with alternative covalent modifications of histones.

<span class="mw-page-title-main">Replisome</span> Molecular complex

The replisome is a complex molecular machine that carries out replication of DNA. The replisome first unwinds double stranded DNA into two single strands. For each of the resulting single strands, a new complementary sequence of DNA is synthesized. The total result is formation of two new double stranded DNA sequences that are exact copies of the original double stranded DNA sequence.

<span class="mw-page-title-main">Bacterial transcription</span>

Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase.

<span class="mw-page-title-main">Eukaryotic transcription</span> Transcription is heterocatalytic function of DNA

Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.

<span class="mw-page-title-main">4EGI-1</span> Chemical compound

4EGI-1 is a synthetic chemical compound which has been found to interfere with the growth of certain types of cancer cells in vitro. Its mechanism of action involves interruption of the binding of cellular initiation factor proteins involved in the translation of transcribed mRNA at the ribosome. The inhibition of these initiation factors prevents the initiation and translation of many proteins whose functions are essential to the rapid growth and proliferation of cancer cells.

<span class="mw-page-title-main">CPEB</span> Protein

CPEB, or cytoplasmic polyadenylation element binding protein, is a highly conserved RNA-binding protein that promotes the elongation of the polyadenine tail of messenger RNA. CPEB is present at postsynaptic sites and dendrites where it stimulates polyadenylation and translation in response to synaptic activity. CPEB most commonly activates the target RNA for translation, but can also act as a repressor, dependent on its phosphorylation state. As a repressor, CPEB interacts with the deadenylation complex and shortens the polyadenine tail of mRNAs. In animals, CPEB is expressed in several alternative splicing isoforms that are specific to particular tissues and functions, including the self-cleaving Mammalian CPEB3 ribozyme. CPEB was first identified in Xenopus oocytes and associated with meiosis; a role has also been identified in the spermatogenesis of Caenorhabditis elegans.

An immature ovum is a cell that goes through the process of oogenesis to become an ovum. It can be an oogonium, an oocyte, or an ootid. An oocyte, in turn, can be either primary or secondary, depending on how far it has come in its process of meiosis.

<span class="mw-page-title-main">Meiotic recombination checkpoint</span>

The meiotic recombination checkpoint monitors meiotic recombination during meiosis, and blocks the entry into metaphase I if recombination is not efficiently processed.

The origin and function of meiosis are currently not well understood scientifically, and would provide fundamental insight into the evolution of sexual reproduction in eukaryotes. There is no current consensus among biologists on the questions of how sex in eukaryotes arose in evolution, what basic function sexual reproduction serves, and why it is maintained, given the basic two-fold cost of sex. It is clear that it evolved over 1.2 billion years ago, and that almost all species which are descendants of the original sexually reproducing species are still sexual reproducers, including plants, fungi, and animals.

Resumption of meiosis occurs as a part of oocyte meiosis after meiotic arrest has occurred. In females, meiosis of an oocyte begins during embryogenesis and will be completed after puberty. A primordial follicle will arrest, allowing the follicle to grow in size and mature. Resumption of meiosis will resume following an ovulatory surge (ovulation) of luteinising hormone (LH).

References

  1. Boron, W.F.; Boulpaep, E.L., eds. (2005). Medical Physiology. Elsevier Saunders. ISBN   1-4160-2328-3. OCLC   56191776.
  2. 1 2 National Research Council (US) Safe Drinking Water Committee; Thomas, R. D. (1986). Thomas, Richard D (ed.). Drinking Water and Health. Vol. 6. Washington, D.C.: National Academies Press. p. 35. doi:10.17226/921. ISBN   0-309-03687-9. PMID   25032465.
  3. Barresi, Michael (2006). "Hormones and Mammalian Egg Maturation". DevBio: A Companion to Developmental Biology. Archived from the original on 2008-05-08.
  4. Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K (2013). "Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans". Sci Transl Med. 5 (172): 172ra21. doi:10.1126/scitranslmed.3004925. PMC   5130338 . PMID   23408054.
  5. 1 2 3 Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K (May 2020). "Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health". Proc Natl Acad Sci U S A. 117 (21): 11513–22. doi:10.1073/pnas.2001124117. PMC   7260990 . PMID   32381741.
  6. 1 2 3 Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (December 1999). "Maskin is a CPEB-associated factor that transiently interacts with elF-4E". Mol Cell. 4 (6): 1017–27. doi:10.1016/s1097-2765(00)80230-0. PMID   10635326.
  7. Lodish HF, Berk A, Kaiser C, Krieger M, Scott MP, Bretscher A, Ploegh HL, Matsudaira PT (2008). Molecular cell biology (6th ed.). W.H. Freeman. p. 351. ISBN   978-0-7167-4366-8. OCLC   83758878.