Dicut

Last updated

In mathematics, a dicut is a partition of the vertices of a directed graph into two subsets, so that each edge that has an endpoint in both subsets is directed from the first subset to the second. Each strongly connected component of the graph must be entirely contained in one of the two subsets, so a strongly connected graph has no nontrivial dicuts. [1]

The second of the two subsets in a dicut, a subset of vertices with no edges that exit the subset, is called a closure. The closure problem is the algorithmic problem of finding a dicut, in an edge-weighted directed graph, whose total weight is as large as possible. It can be solved in polynomial time. [2]

In planar graphs, dicuts and cycles are dual concepts. The dual graph of a directed graph, embedded in the plane, is a graph with a vertex for each face of the given graph, and a dual edge between two dual vertices when the corresponding two faces are separated by an edge. Each dual edge crosses one of the original graph edges, turned by 90° clockwise. For a dicut in the given graph, the duals of the edges that cross the dicut form a directed cycle in the dual graph, and vice versa. [3]

A dijoin can be defined as a set of edges that crosses all dicuts; when the edges of a dijoin are contracted, the result is a strongly connected graph. Woodall's conjecture, an unsolved problem in this area, states that in any directed graph the minimum number of edges in a dicut (the unweighted minimum closure) equals the maximum number of disjoint dijoins that can be found in the graph (a packing of dijoins). [1] [4] A fractional weighted version of the conjecture, posed by Jack Edmonds and Rick Giles, was refuted by Alexander Schrijver. [5] [6] [1] In the other direction, the Lucchesi–Younger theorem states that the minimum size of a dijoin equals the maximum number of disjoint dicuts that can be found in a given graph. [7] [8]

Related Research Articles

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs are NP-complete.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

In the mathematical theory of matroids, a graphic matroid is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid ; these are exactly the graphic matroids formed from planar graphs.

In the mathematical discipline of graph theory, Menger's theorem says that in a finite graph, the size of a minimum cut set is equal to the maximum number of disjoint paths that can be found between any pair of vertices. Proved by Karl Menger in 1927, it characterizes the connectivity of a graph. It is generalized by the max-flow min-cut theorem, which is a weighted, edge version, and which in turn is a special case of the strong duality theorem for linear programs.

<span class="mw-page-title-main">Connectivity (graph theory)</span> Basic concept of graph theory

In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing a directed acyclic graph, an acyclic subgraph of the given graph. The feedback arc set with the fewest possible edges is the minimum feedback arc set and its removal leaves the maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Kőnig's theorem (graph theory)</span> Theorem showing that maximum matching and minimum vertex cover are equivalent for bipartite graphs

In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (1931), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.

In graph theory, a strong orientation of an undirected graph is an assignment of a direction to each edge that makes it into a strongly connected graph.

In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.

<span class="mw-page-title-main">Herschel graph</span> Bipartite undirected polyhedral graph

In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.

In matroid theory, a field within mathematics, a gammoid is a certain kind of matroid, describing sets of vertices that can be reached by vertex-disjoint paths in a directed graph.

In the mathematics of directed graphs, Woodall's conjecture is an unproven relationship between dicuts and dijoins. It was posed by Douglas Woodall in 1976.

In the mathematics of directed graphs, the Lucchesi–Younger theorem is a relationship between dicuts and dijoins. It was published by Cláudio L. Lucchesi and Daniel H. Younger in 1978. Their proof resolved a conjecture that had been posed roughly a decade earlier by Younger, and in unpublished work by Neil Robertson, motivated by the duality in planar graphs between dijoins and feedback arc sets.

In mathematics, a dijoin is a subset of the edges of a directed graph, with the property that contracting every edge in the dijoin produces a strongly connected graph. Equivalently, a dijoin is a subset of the edges that, for every dicut, includes at least one edge crossing the dicut. Here, a dicut is a partition of the vertices into two subsets, so that each edge that has an endpoint in both subsets is directed from the first subset to the second.

In the theory of combinatorial optimization, submodular flow is a general class of optimization problems that includes as special cases the minimum-cost flow problem, matroid intersection, and the problem of computing a minimum-weight dijoin in a weighted directed graph. It was originally formulated by Jack Edmonds and Rick Giles, and can be solved in polynomial time.

References

  1. 1 2 3 Abdi, Ahmad; Cornuéjols, Gérard; Zlatin, Michael (2022), On packing dijoins in digraphs and weighted digraphs, arXiv: 2202.00392
  2. Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B. (1993), "19.2 Maximum weight closure of a graph", Network flows, Englewood Cliffs, NJ: Prentice Hall Inc., pp. 719–724, ISBN   0-13-617549-X, MR   1205775 .
  3. Noy, Marc (2001), "Acyclic and totally cyclic orientations in planar graphs", American Mathematical Monthly , 108 (1): 66–68, doi:10.2307/2695680, JSTOR   2695680, MR   1857074 .
  4. Woodall, D. R. (1978), "Menger and König systems", in Alavi, Yousef; Lick, Don R. (eds.), Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Mathematics, vol. 642, Berlin: Springer, pp. 620–635, doi:10.1007/BFb0070416, MR   0499529
  5. Edmonds, Jack; Giles, Rick (1977), "A min-max relation for submodular functions on graphs", Studies in integer programming (Proc. Workshop, Bonn, 1975), Annals of Discrete Mathematics, vol. 1, North-Holland, Amsterdam, pp. 185–204, MR   0460169
  6. Schrijver, A. (1980), "A counterexample to a conjecture of Edmonds and Giles", Discrete Mathematics , 32 (2): 213–215, doi: 10.1016/0012-365X(80)90057-6 , MR   0592858
  7. Lovász, László (1976), "On two minimax theorems in graph", Journal of Combinatorial Theory, Series B, 21 (2): 96–103, doi: 10.1016/0095-8956(76)90049-6 , MR   0427138
  8. Lucchesi, C. L.; Younger, D. H. (1978), "A minimax theorem for directed graphs", Journal of the London Mathematical Society, Second Series, 17 (3): 369–374, doi:10.1112/jlms/s2-17.3.369, MR   0500618