Digital signal controller

Last updated

A digital signal controller (DSC) is a hybrid of microcontrollers and digital signal processors (DSPs). Like microcontrollers, DSCs have fast interrupt responses, offer control-oriented peripherals like PWMs and watchdog timers, and are usually programmed using the C programming language, although they can be programmed using the device's native assembly language. On the DSP side, they incorporate features found on most DSPs such as single-cycle multiply–accumulate (MAC) units, barrel shifters, and large accumulators. Not all vendors have adopted the term DSC. The term was first introduced by Microchip Technology in 2002 with the launch of their 6000 series DSCs and subsequently adopted by most, but not all DSC vendors. For example, Infineon and Renesas refer to their DSCs as microcontrollers.

Contents

DSCs are used in a wide range of applications, but the majority go into motor control, power conversion, and sensor processing applications. Currently, DSCs are being marketed as green technologies for their potential to reduce power consumption in electric motors and power supplies.

In order of market share, the top three DSC vendors are Texas Instruments, Freescale, and Microchip Technology, according to market research firm Forward Concepts (2007). These three companies dominate the DSC market, with other vendors such as Infineon and Renesas taking a smaller slice of the pie.

DSC chips

NOTE: Data is from 2012 (Microchip and TI) and table currently only includes offering from the top 3 DSC vendors.

VendorDeviceClock Speed (MHz)Flash (kB)PWM channels, resolution, duty cycle
MicrochipdsPIC30F306–1444–8 (16 bits, 1 or 16.5 ns depending on part)
dsPIC33F4012–256up 18 PWM (16 bits, 12.5 ns)
dsPIC33E7064-512up 16 PWM (16 bits, 8.32 ns)
Texas InstrumentsTMS320F28x60–15032–51216 PWM (13 bits, 150 ps)
TMS320LF240x4016–647–16 PWM (11 bits, 150 ps)
FreescaleMC56F83x6048–28012 PWM (15 bits, 10 ns)
MC56F80x3212–645–6 PWM (15 bits, 10 ns)
MC56F81x4040–57212 PWM (15 bits, 10 ns)

DSC software

DSCs, like microcontrollers and DSPs, require software support. There are a growing number of software packages that offer the features required by both DSP applications and microcontroller applications. With a broader set of requirements, software solutions are more rare. They require: development tools, DSP libraries, optimization for DSP processing, fast interrupt handling, multi-threading, and a tiny footprint.

Related Research Articles

<span class="mw-page-title-main">Microcontroller</span> Small computer on a single integrated circuit

A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

<span class="mw-page-title-main">MCS-51</span> Single chip microcontroller series by Intel

The Intel MCS-51 is a single chip microcontroller (MCU) series developed by Intel in 1980 for use in embedded systems. The architect of the Intel MCS-51 instruction set was John H. Wharton. Intel's original versions were popular in the 1980s and early 1990s, and enhanced binary compatible derivatives remain popular today. It is a complex instruction set computer, but also has some of the features of RISC architectures, such as a large register set and register windows, and has separate memory spaces for program instructions and data.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

SuperH is a 32-bit reduced instruction set computing (RISC) instruction set architecture (ISA) developed by Hitachi and currently produced by Renesas. It is implemented by microcontrollers and microprocessors for embedded systems.

<span class="mw-page-title-main">Digital signal processor</span> Specialized microprocessor optimized for digital signal processing

A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on metal–oxide–semiconductor (MOS) integrated circuit chips. They are widely used in audio signal processing, telecommunications, digital image processing, radar, sonar and speech recognition systems, and in common consumer electronic devices such as mobile phones, disk drives and high-definition television (HDTV) products.

<span class="mw-page-title-main">PIC microcontrollers</span> Line of single-chip microprocessors from Microchip Technology

PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1650 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.

<span class="mw-page-title-main">FreeRTOS</span> Real-time operating system

FreeRTOS is a real-time operating system kernel for embedded devices that has been ported to 35 microcontroller platforms. It is distributed under the MIT License.

TriCore is a 32-bit microcontroller architecture from Infineon. It unites the elements of a RISC processor core, a microcontroller and a DSP in one chip package.

V850 is a 32-bit RISC CPU architecture produced by Renesas Electronics for embedded microcontrollers. It was designed by NEC as a replacement for their earlier NEC V60 family, and was introduced shortly before NEC sold their designs to Renesas in the early 1990s. It has continued to be developed by Renesas as of 2018.

ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

Microchip Technology Incorporated is a publicly listed American corporation that manufactures microcontroller, mixed-signal, analog, and Flash-IP integrated circuits. Its products include microcontrollers, Serial EEPROM devices, Serial SRAM devices, embedded security devices, radio frequency (RF) devices, thermal, power and battery management analog devices, as well as linear, interface and wireless products.

DSPnano is an embedded real-time operating system (RTOS) which is compatible with POSIX and embedded Linux. It was first created in 1996 and was one of the first pthread based real-time kernels. Its entire focus was on tiny real-time digital signal processing systems and has been optimized to deliver high performance DSP on embedded digital signal controllers and digital signal processors. Its parent was the Unison Operating System.

<span class="mw-page-title-main">XC800 family</span>

The Infineon XC800 family is an 8-bit microcontroller family, first introduced in 2005, with a dual cycle optimized 8051 "E-Warp" core. The XC800 family is divided into two categories, the A-Family for Automotive and the I-Family for Industrial and multi-market applications.

<span class="mw-page-title-main">ARM Cortex-M</span> Group of 32-bit RISC processor cores

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Limited. These cores are optimized for low-cost and energy-efficient integrated circuits, which have been embedded in tens of billions of consumer devices. Though they are most often the main component of microcontroller chips, sometimes they are embedded inside other types of chips too. The Cortex-M family consists of Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M52, Cortex-M55, Cortex-M85. A floating-point unit (FPU) option is available for Cortex-M4 / M7 / M33 / M35P / M52 / M55 / M85 cores, and when included in the silicon these cores are sometimes known as "Cortex-MxF", where 'x' is the core variant.

DAVE (Infineon) Digital Application Virtual Engineer (DAVE) is a software development and code generation tool for microcontroller applications created in C/C++. DAVE is a standalone system with automatic code generation modules. It is suited for the development of software drivers for Infineon microcontrollers and aids the developer with automatically created C-level templates and user-desired functionalities.

XMC is a family of microcontroller ICs by Infineon. The XMC microcontrollers use the 32-bit RISC ARM processor cores from ARM Holdings, such as Cortex-M4F and Cortex-M0. XMC stands for "cross-market microcontrollers", meaning that this family can cover due to compatibility and configuration options, a wide range in industrial applications. The family supports three essential trends in the industry: It increases the energy efficiency of the systems, supports a variety of communication standards and reduces software complexity in the development of the application's software environment with the parallel released eclipse-based software tool DAVE.

RL78 Family is a 16-bit CPU core for embedded microcontrollers of Renesas Electronics introduced in 2010.

In computing, autonomous peripheral operation is a hardware feature found in some microcontroller architectures to off-load certain tasks into embedded autonomous peripherals in order to minimize latencies and improve throughput in hard real-time applications as well as to save energy in ultra-low-power designs.

References