In discrete mathematics, a direction-preserving function (or mapping) is a function on a discrete space, such as the integer grid, that (informally) does not change too drastically between two adjacent points. It can be considered a discrete analogue of a continuous function.
The concept was first defined by Iimura. [1] [2] Some variants of it were later defined by Yang, [3] Chen and Deng, [4] Herings, van-der-Laan, Talman and Yang, [5] and others.
We focus on functions , where the domain X is a finite subset of the Euclidean space . ch(X) denotes the convex hull of X.
There are many variants of direction-preservation properties, depending on how exactly one defines the "drastic change" and the "adjacent points". Regarding the "drastic change" there are two main variants:
Regarding the "adjacent points" there are several variants:
Specific definitions are presented below. All examples below are for dimensions and for X = { (2,6), (2,7), (3, 6), (3, 7) }.
A cell is a subset of that can be expressed by for some . For example, the square is a cell.
Two points in are called cell connected if there is a cell that contains both of them.
Hypercubic direction-preservation properties require that the function does not change too drastically in cell-connected points (points in the same hypercubic cell).
fa | 6 | 7 |
---|---|---|
2 | (2,1) | (1,1) |
3 | (0,1) | (0,0) |
f is called hypercubic direction preserving (HDP) if, for any pair of cell-connected points x,y in X, for all : . The term locally direction-preserving (LDP) is often used instead. [1] The function fa on the right is DP.
fb | 6 | 7 |
---|---|---|
2 | (2,1) | (1,1) |
3 | (1,-1) | (0,0) |
f is called hypercubic gross direction preserving (HGDP), or locally gross direction preserving (LGDP), if for any pair of cell-connected points x,y in X,. [3] : Def.2.2 Every HDP function is HGDP, but the converse is not true. The function fb is HGDP, since the scalar product of every two vectors in the table is non-negative. But it is not HDP, since the second component switches sign between (2,6) and (3,6): .
A simplex is called integral if all its vertices have integer coordinates, and they all lie in the same cell (so the difference between coordinates of different vertices is at most 1).
A triangulation of some subset of is called integral if all its simplices are integral.
Given a triangulation, two points are called simplicially connected if there is a simplex of the triangulation that contains both of them.
Note that, in an integral triangulation, every simplicially-connected points are also cell-connected, but the converse is not true. For example, consider the cell . Consider the integral triangulation that partitions it into two triangles: {(2,6),(2,7),(3,7)} and {(2,6),(3,6),(3,7)}. The points (2,7) and (3,6) are cell-connected but not simplicially-connected.
Simplicial direction-preservation properties assume some fixed integral triangulation of the input domain. They require that the function does not change too drastically in simplicially-connected points (points in the same simplex of the triangulation). This is, in general, a much weaker requirement than hypercubic direction-preservation.
f is called simplicial direction preserving (SDP) if, for some integral triangulation of X, for any pair of simplicially-connected points x,y in X, for all : . [4] : Def.4
fc | 6 | 7 |
---|---|---|
2 | (2,1) | (1,1) |
3 | (1,-2) | (0,0) |
f is called simplicially gross direction preserving (SGDP) or simplicially-local gross direction preserving (SLGDP) if there exists an integral triangulation of ch(X) such that, for any pair of simplicially-connected points x,y in X,. [6] [7] [8]
Every HGDP function is SGDP, but HGDP is much stronger: it is equivalent to SGDP w.r.t. all possible integral triangulations of ch(X), whereas SGDP relates to a single triangulation. [3] : Def.2.3 As an example, the function fc on the right is SGDP by the triangulation that partitions the cell into the two triangles {(2,6),(2,7),(3,7)} and {(2,6),(3,6),(3,7)}, since in each triangle, the scalar product of every two vectors is non-negative. But it is not HGDP, since .
In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation, and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
In mathematics, real trees are a class of metric spaces generalising simplicial trees. They arise naturally in many mathematical contexts, in particular geometric group theory and probability theory. They are also the simplest examples of Gromov hyperbolic spaces.
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.
Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables. The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables. It also encodes the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.
In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.
Simplex noise is the result of an n-dimensional noise function comparable to Perlin noise but with fewer directional artifacts and, in higher dimensions, a lower computational overhead. Ken Perlin designed the algorithm in 2001 to address the limitations of his classic noise function, especially in higher dimensions.
In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness.
Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.
This is a glossary of properties and concepts in algebraic topology in mathematics.
Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the meaning of the word has evolved and today usually means a method of computation. Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change.
An integrally convex set is the discrete geometry analogue of the concept of convex set in geometry.
In discrete mathematics, a discrete fixed-point is a fixed-point for functions defined on finite sets, typically subsets of the integer grid .
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. In its most common form, we are given a function f that satisfies the condition to the Brouwer fixed-point theorem, that is: f is continuous and maps the unit d-cube to itself. The Brouwer fixed-point theorem guarantees that f has a fixed point, but the proof is not constructive. Various algorithms have been devised for computing an approximate fixed point. Such algorithms are used in economics for computing a market equilibrium, in game theory for computing a Nash equilibrium, and in dynamic system analysis.