Dissolution testing

Last updated

In the pharmaceutical industry, drug dissolution testing is routinely used to provide critical in vitro drug release information for both quality control purposes, i.e., to assess batch-to-batch consistency of solid oral dosage forms such as tablets, and drug development, i.e., to predict in vivo drug release profiles. [1] There are three typical situations where dissolution testing plays a vital role: (i) formulation and optimization decisions: during product development, for products where dissolution performance is a critical quality attribute, both the product formulation and the manufacturing process are optimized based on achieving specific dissolution targets. (ii) Equivalence decisions: during generic product development, and also when implementing post-approval process or formulation changes, similarity of in vitro dissolution profiles between the reference product and its generic or modified version are one of the key requirements for regulatory approval decisions. (iii) Product compliance and release decisions: during routine manufacturing, dissolution outcomes are very often one of the criteria used to make product release decisions. [2] [3] [4]

Contents

The main objective of developing and evaluating an IVIVC is to establish the dissolution test as a surrogate for human studies, as stated by the Food and Drug Administration (FDA). [5] Analytical data from drug dissolution testing are sufficient in many cases to establish safety and efficacy of a drug product without in vivo tests, following minor formulation and manufacturing changes (Qureshi and Shabnam, 2001). Thus, the dissolution testing which is conducted in dissolution apparatus must be able to provide accurate and reproducible results.

Equipment

Different types of Dissolution Units: A Water-bath unit equipped with USP Dissolution Apparatus 2 - Paddle (Top-left), A amber vessel water bath unit that has been equipped with USP Dissolution Apparatus 1 without baskets being placed on yet (Top-right), and a dissolution unit that uses a heating jacket (bottom) Dissolution units.jpg
Different types of Dissolution Units: A Water-bath unit equipped with USP Dissolution Apparatus 2 - Paddle (Top-left), A amber vessel water bath unit that has been equipped with USP Dissolution Apparatus 1 without baskets being placed on yet (Top-right), and a dissolution unit that uses a heating jacket (bottom)

Several dissolution apparatuses exist. In United States Pharmacopeia (USP) General Chapter <711> Dissolution, there are four dissolution apparatuses standardized and specified. [6] They are:

General Method

The vessels of the dissolution method are usually either partially immersed in a water bath solution or heated by a jacket. An apparatus is used on solution within the vessels for a predetermined amount of time which depends on the method for the particular drug. The dissolution medium within the vessels are heated to 37 °C with an acceptable difference of ± 0.5 °C [7]

The performances of dissolution apparatuses are highly dependent on hydrodynamics due to the nature of dissolution testing. The designs of the dissolution apparatuses and the ways of operating dissolution apparatuses have huge impacts on the hydrodynamics, thus the performances. Hydrodynamic studies in dissolution apparatuses were carried out by researchers over the past few years with both experimental methods and numerical modeling such as Computational Fluid Dynamics (CFD). The main target was USP Dissolution Apparatus 2. [1] [8] [9] [10] [11] [12] [13] [14] The reason is that many researchers suspect that USP Dissolution Apparatus 2 provides inconsistent and sometimes faulty data. [15] [16] [17] [18] [19] [20] [21] The hydrodynamic studies of USP Dissolution Apparatus 2 mentioned above clearly showed that it does have intrinsic hydrodynamic issues which could result in problems. In 2005, Professor Piero Armenante from New Jersey Institute of Technology (NJIT) and Professor Fernando Muzzio from Rutgers University submitted a technical report to the FDA. [22] In this technical report, the intrinsic hydrodynamic issues with USP Dissolution Apparatus 2 based on the research findings of Armenante's group and Muzzio's group were discussed.

More recently, hydrodynamic studies were conducted in USP Dissolution Apparatus 4. [23] [24] [25]

Operation

The general procedure for a dissolution involves a liquid known as Dissolution Medium which is placed in the vessels of a dissolution unit. The medium can range from degassed or sonicated deionized water to pH adjusted chemically-prepared solutions and mediums that are prepared with surfactants. [26] Degassing the dissolution medium through sonication or other means is important since the presence of dissolved gases may affect results. The drug is placed within the medium in the vessels after it has reached sufficient temperature and then the dissolution apparatus is operated. Sample solutions collected from dissolution testing are commonly analyzed by HPLC or Ultraviolet–visible spectroscopy. [27] There are criteria known as 'release specifications' that samples tested must meet statistically, both as individual values and as average of the whole. [28] [29] One such criteria is the parameter "Q", which is a percentage value denoting the quantity of dissolved active ingredient within the monograph of a sample solution. If the initial sample analysis, known as S1 or stage 1 testing fails to meet the acceptable value for Q, then additional testing known as stage 2 and 3 testing is required. S3 testing is performed only if S2 testing still fails the Q parameter. If there is a deviation from the acceptable Q values at S3, then an OOS (Out of Specification) investigation is generally initiated.

Related Research Articles

<span class="mw-page-title-main">Tablet (pharmacy)</span> Drug delivery form in which the ingredients are solidified for later consumption

A tablet is a pharmaceutical oral dosage form or solid unit dosage form. Tablets may be defined as the solid unit dosage form of medication with suitable excipients. It comprises a mixture of active substances and excipients, usually in powder form, that are pressed or compacted into a solid dose. The main advantages of tablets are to ensure a consistent dose of medicine that is easy to consume.

<span class="mw-page-title-main">Valdecoxib</span> Nonsteroidal anti-inflammatory drug

Valdecoxib is a nonsteroidal anti-inflammatory drug (NSAID) used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is a selective cyclooxygenase-2 inhibitor. It was patented in 1995.

<span class="mw-page-title-main">Metoprolol</span> Medication of the selective β1 receptor blocker type

Metoprolol, sold under the brand name Lopressor, among others, is a selective β1 receptor blocker medication. It is used to treat high blood pressure, chest pain due to poor blood flow to the heart, and a number of conditions involving an abnormally fast heart rate. By working on the beta-1 receptor of the cardiac muscle cells, it yields both a chronotropic and inotropic effect. It is also used to prevent further heart problems after myocardial infarction and to prevent headaches in those with migraines.

An excipient is a substance formulated alongside the active ingredient of a medication, included for the purpose of long-term stabilization, bulking up solid formulations that contain potent active ingredients in small amounts, or to confer a therapeutic enhancement on the active ingredient in the final dosage form, such as facilitating drug absorption, reducing viscosity, or enhancing solubility. Excipients can also be useful in the manufacturing process, to aid in the handling of the active substance concerns such as by facilitating powder flowability or non-stick properties, in addition to aiding in vitro stability such as prevention of denaturation or aggregation over the expected shelf life. The selection of appropriate excipients also depends upon the route of administration and the dosage form, as well as the active ingredient and other factors. A comprehensive classification system based on structure-property-application relationships has been proposed for excipients used in parenteral medications.

<span class="mw-page-title-main">Nutraceutical</span> Class of nutritional product

A nutraceutical or bioceutical is a pharmaceutical alternative which claims physiological benefits. In the US, nutraceuticals are largely unregulated, as they exist in the same category as dietary supplements and food additives by the FDA, under the authority of the Federal Food, Drug, and Cosmetic Act. The word "nutraceutical" is a portmanteau term, blending the words "nutrition" and "pharmaceutical".

<span class="mw-page-title-main">Ranitidine</span> Medication that decreases stomach acid

Ranitidine, sold under the brand name Zantac among others, is a medication used to decrease stomach acid production. It is commonly used in treatment of peptic ulcer disease, gastroesophageal reflux disease, and Zollinger–Ellison syndrome. It can be given by mouth, injection into a muscle, or injection into a vein. In September 2019, the probable carcinogen N-nitrosodimethylamine (NDMA) was discovered in ranitidine products from a number of manufacturers, resulting in recalls. In April 2020, ranitidine was withdrawn from the United States market and suspended in the European Union and Australia due to these concerns. In 2022, these concerns were confirmed in a nationwide population study "ranitidine increased the risk of liver", lung, gastric and pancreatic cancer by 22%,17%, 26% and 35%, respectively. It increased overall cancer risk 10%, p < 0.001.

<span class="mw-page-title-main">Losartan</span> Blood pressure medication

Losartan, sold under the brand name Cozaar among others, is a medication used to treat high blood pressure (hypertension). It is in the angiotensin receptor blocker (ARB) family of medication, and is considered protective of the kidneys. Besides hypertension, it is also used in diabetic kidney disease, heart failure, and left ventricular enlargement. It comes as a tablet that is taken by mouth. It may be used alone or in addition to other blood pressure medication. Up to six weeks may be required for the full effects to occur.

Sodium croscarmellose is an internally cross-linked sodium carboxymethylcellulose for use as a superdisintegrant in pharmaceutical formulations.

The Biopharmaceutics Classification System is a system to differentiate the drugs on the basis of their solubility and permeability.

<span class="mw-page-title-main">Pill splitting</span>

Pill-splitting refers to the practice of splitting a tablet or pill to provide a lower dose of the active ingredient, or to obtain multiple smaller doses, either to reduce cost or because the pills available provide a larger dose than required. Many pills that are suitable for splitting come pre-scored so that they may easily be halved.

Torrent Pharmaceuticals Ltd is an Indian multinational pharmaceutical company, owned by Torrent Group and headquartered in Ahmedabad. It was promoted by U. N. Mehta, initially as Trinity Laboratories Ltd, and was later renamed Torrent Pharmaceuticals Ltd.

<span class="mw-page-title-main">Amcinonide</span> Chemical compound

Amcinonide is a topical glucocorticoid used to treat itching, redness and swelling associated with several dermatologic conditions such as atopic dermatitis and allergic contact dermatitis. Amcinonide can also be classified as a multi-functional small molecule corticosteroid, which has been approved by the FDA and is currently marketed as an ointment, lotion, or cream. It acts as both a transcription factor for responses to glucocorticoids and modulator for other transcription factors while also regulating phospholipase A2 activity.

<span class="mw-page-title-main">Orally disintegrating tablet</span> Pill that dissolves on contact with saliva

An orally disintegrating tablet or orally dissolving tablet (ODT) is a drug dosage form available for a limited range of over-the-counter (OTC) and prescription medications. ODTs differ from traditional tablets in that they are designed to be dissolved on the tongue rather than swallowed whole. The ODT serves as an alternative dosage form for patients who experience dysphagia or for where compliance is a known issue and therefore an easier dosage form to take ensures that medication is taken. Common among all age groups, dysphagia is observed in about 35% of the general population, as well as up to 60% of the elderly institutionalized population and 18-22% of all patients in long-term care facilities ODTs may have a faster onset of effect than tablets or capsules, and have the convenience of a tablet that can be taken without water. During the last decade, ODTs have become available in a variety of therapeutic markets, both OTC and by prescription.

Pharmaceutical formulation, in pharmaceutics, is the process in which different chemical substances, including the active drug, are combined to produce a final medicinal product. The word formulation is often used in a way that includes dosage form.

<span class="mw-page-title-main">Thin-film drug delivery</span> Drug delivery method

Thin-film drug delivery uses a dissolving film or oral drug strip to administer drugs via absorption in the mouth and/or via the small intestines (enterically). A film is prepared using hydrophilic polymers that rapidly dissolves on the tongue or buccal cavity, delivering the drug to the systemic circulation via dissolution when contact with liquid is made.

A powder is an assembly of dry particles dispersed in air. If two different powders are mixed perfectly, theoretically, three types of powder mixtures can be obtained: the random mixture, the ordered mixture or the interactive mixture.

A self-microemulsifying drug delivery system (SMEDDS) is a drug delivery system that uses a microemulsion achieved by chemical rather than mechanical means. That is, by an intrinsic property of the drug formulation, rather than by special mixing and handling. It employs the familiar ouzo effect displayed by anethole in many anise-flavored liquors. Microemulsions have significant potential for use in drug delivery, and SMEDDS are the best of these systems identified to date. SMEDDS are of particular value in increasing the absorption of lipophilic drugs taken by mouth.

<span class="mw-page-title-main">Pharmaceutical manufacturing</span>

Pharmaceutical manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs as part of the pharmaceutical industry. The process of drug manufacturing can be broken down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others.

Blend time, sometimes termed mixing time, is the time to achieve a predefined level of homogeneity of a tracer in a mixing vessel. Blend time is an important parameter to evaluate the mixing efficiency of mixing devices. In order to make this definition valid, the tracer should be in the same physical phase as the bulk material.

An in-vitro in-vivo correlation (IVIVC) has been defined by the U.S. Food and Drug Administration (FDA) as "a predictive mathematical model describing the relationship between an in-vitro property of a dosage form and an in-vivo response".

References

  1. 1 2 Bai, G., Wang, Y., Armenante, P. M., "Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at Different Impeller Agitation Speeds, " International Journal of Pharmaceutics, 403 (1-2), Pages 1–14, 2011
  2. Wang, Yifan; Snee, Ronald D.; Keyvan, Golshid; Muzzio, Fernando J. (2016-05-03). "Statistical comparison of dissolution profiles". Drug Development and Industrial Pharmacy. 42 (5): 796–807. doi:10.3109/03639045.2015.1078349. ISSN   0363-9045. PMID   26294289. S2CID   34517111.
  3. Anand, Om; Yu, Lawrence X.; Conner, Dale P.; Davit, Barbara M. (2011-04-09). "Dissolution Testing for Generic Drugs: An FDA Perspective". The AAPS Journal. 13 (3): 328–335. doi:10.1208/s12248-011-9272-y. ISSN   1550-7416. PMC   3160163 . PMID   21479700.
  4. Zhang, X.; Duan, J.; Kesisoglou, F.; Novakovic, J.; Amidon, G. L.; Jamei, M.; Lukacova, V.; Eissing, T.; Tsakalozou, E. (2018). "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop". CPT: Pharmacometrics & Systems Pharmacology. 6 (8): 492–495. doi:10.1002/psp4.12204. ISSN   2163-8306. PMC   5572334 . PMID   28571121.
  5. Suarez-Sharp, Sandra; Li, Min; Duan, John; Shah, Heta; Seo, Paul (2016-11-01). "Regulatory Experience with In Vivo In Vitro Correlations (IVIVC) in New Drug Applications". The AAPS Journal. 18 (6): 1379–1390. doi:10.1208/s12248-016-9966-2. ISSN   1550-7416. PMID   27480319. S2CID   2560096.
  6. United States Pharmacopeia 34/National Formulary 29, 2011.
  7. USP 29 General Chapter <711> Archived 2016-11-30 at the Wayback Machine 2011 The United States Pharmacopeial Convention
  8. Bai, G., Armenante, P. M., "Hydrodynamics, Mass transfer and Dissolution Effects Induced by Tablet Location during Dissolution Testing," Journal of Pharmaceutical Sciences, Volume 98, Issue 4, Pages 1511-1531, 2009
  9. Bai, G., Armenante, P. M., " Velocity Distribution and Shear Rate Variability Resulting from Changes in the Impeller Location in the USP Dissolution Testing Apparatus II, " Pharmaceutical Research, Volume 25, Issue 2, Pages 320-336, 2008
  10. Bai, G., Armenante, P. M., Plank, R. V., "Experimental and Computational Determination of Blend Time in USP Dissolution Testing Apparatus II," Journal of Pharmaceutical Sciences, Volume 96, Issue 11, Pages 3072-3086, 2007.
  11. Bai, G., Armenante, P. M., Plank, R. V., Gentzler, M., Ford, K. and Harmon P., "Hydrodynamic Investigation of USP Dissolution Test Apparatus II," Journal of Pharmaceutical Sciences, Volume 96, Issue 9, Pages 2327-2349, 2007.
  12. Kukura J., Baxter JL., Muzzio FJ., "Shear distribution and variability in the USP Apparatus 2 under turbulent conditions". Int J Pharm. 279 (1-2), Pages 9–17, 2004.
  13. Baxter JL, Kukura J, Muzzio FJ. "Hydrodynamics-induced variability in the USP Apparatus II Dissolution Test". Int J Pharmaceutics 292 (1-2), Pages 17–28, 2005
  14. McCarthy L., Bradley G., Sexton J., Corrigan O., Healy AM., "Computational fluid dynamics modeling of the paddle dissolution apparatus: Agitation rate mixing patterns and fluid velocities". AAPS Pharm Sci Tech 5 (2), 2004.
  15. Cox DC., Furman WB., Thornton LK., 1983. Systematic error associated with Apparatus 2 of the USP Dissolution Test III: Limitation of Calibrators and the USP Suitability Test. J Pharm Sci. 72 (8), 910– 913.
  16. Cox DC., Furman WB., 1982. Systematic error associated with Apparatus 2 of the USP dissolution test I: Effects of physical alignment of the dissolution apparatus. J Pharm Sci 71 (4), 451–452.
  17. Moore TW., Hamilton JF., Kerner CM., 1995. Dissolution testing: Limitation of USP prednisone and salicylic acid calibrator tablets. Pharmacopeial Forum 21 (5), 1387–1396.
  18. Costa P, Lobo JMS . 2001 . Influence of dissolution medium agitation on release profiles of sustained release tablets. Drug Devel Ind Pharm 27 (8), 811–817.
  19. Qureshi SA., McGilveray IJ., 1999. Typical variability in drug dissolution testing: study with USP and FDA calibrator tablets and a marketed drug (glibenclamide) product. Eur J Pharm Sci. 7 (3), 249-258
  20. Qureshi SA., Shabnam J., 2001. Cause of high variability in drug dissolution testing and its impact on setting tolerances. Euro J Pharm Sci. 12 (3),271–276.
  21. Mauger J., Ballard J., Brockson R., De S., Gray V., Robinson D., 2003. Intrinsic dissolution performance of the USP dissolution apparatus 2 (rotating paddle) using modified salicylic acid calibration tablets: Proof of principle. Dissol Technol 10(3), 6–15.
  22. "Archived copy" (PDF). Food and Drug Administration . Archived from the original (PDF) on 2017-05-24. Retrieved 2019-12-16.{{cite web}}: CS1 maint: archived copy as title (link)
  23. Kakhi, M.,"Mathematical modeling of the fluid dynamics in the flow-through cell",International Journal of Pharmaceutics, 376 (1-2), pp. 22-40, 2009
  24. Kakhi, M.,"Classification of the flow regimes in the flow-through cell", European Journal of Pharmaceutical Sciences, 37 (5), pp. 531-544, 2009
  25. D'Arcy, D.M., Liu, B., Bradley, G., Healy, A.M., Corrigan, O.I.,"Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: Considerations for dissolution in a low velocity pulsing flow", Pharmaceutical Research 27 (2), pp. 246-258, 2010
  26. Gregory P. Martin And Vivian A. Gray. "Selection of Dissolution Medium for QC Testing of Drug Products." Journal of Validation Technology (n.d.)(2011): 7-11.
  27. “UV Spectroscopy Gains Use in Dissolution Testing," Pharmaceutical Technology Partnerships in Outsourcing Supplement 40 (13) 2016.
  28. http://www.dissolutiontech.com/DTresour/200508Articles/DT200508_A04.pdf Meneces, Nora S., Carlos D. Saccone, and Julio Tessore. "USP Dissolution Test with Pooled Samples Statistical Analysis of the Third Stage." Dissolution Technologies 12.3 (2005): 18-21. Web.
  29. "Usp–Nf | Usp-Nf".