Distortion free energy density

Last updated

The distortion free energy density is a quantity that describes the increase in the free energy density of a liquid crystal caused by distortions from its uniformly aligned configuration. It also commonly goes by the name Frank free energy density named after Frederick Charles Frank.

Contents

Nematic liquid crystal

The distortion free energy density in a nematic liquid crystal is a measure of the increase in the Helmholtz free energy per unit volume due to deviations in the orientational ordering away from a uniformly aligned nematic director configuration. The total free energy density for a nematic is therefore given by:

where is the total free energy density of a liquid crystal, is the free energy density associated with a uniformly aligned nematic, and is the contribution to the free energy density due to distortions in this order. For a non-chiral nematic liquid crystal, is commonly taken to consist of three terms given by:

The unit vector is the normalized director of the molecules , which describes the nature of the distortion. The three constants are known as the Frank constants and are dependent on the particular liquid crystal being described. They are usually of the order of dyn. [1] Each of the three terms represent a type of distortion of a nematic. The first term represents pure splay, the second term pure twist, and the third term pure bend. A combination of these terms can be used to represent an arbitrary deformation in a liquid crystal. It is often the case that all three Frank constants are of the same order of magnitude and so it is commonly approximated that . [2] This approximation is commonly referred to as the one-constant approximation and is used predominantly because the free energy simplifies when in this much more computationally compact form:

A fourth term is also commonly added to the Frank free energy density called the saddle-splay energy that describes the surface interaction. It is often ignored when calculating director field configurations since the energies in the bulk of the liquid crystal are often greater than those due to the surface. It is given by:

If inclusions are added to a liquid crystal, an additional term contributes to the free energy density due to their presence, often characterized by a term known as the Rapini approximation:

The anchoring energy is given by and the unit vector is normal to the particles surface. [3]

Chiral liquid crystal

For the case when the liquid crystal consists of chiral molecules, an additional term to the distortion free energy density is added. The term changes sign when the axes are inverted and is given by:

The prefactor is dependent on the degree of molecular chirality. [4] Therefore, for the case of a chiral liquid crystal, the total free energy density is given by:

The quantity describes the pitch of the cholesteric helix.

Electric and magnetic field contributions

As a result of liquid crystal mesogens' anisotropic diamagnetic properties and electrical polarizability, electric and magnetic fields can induce alignments in liquid crystals. By applying a field, one is effectively lowering the free energy of the liquid crystal. [5]

To understand the effect a magnetic field produces on the distortion free energy density, a small region of local nematic order is often considered in which and is the magnetic susceptibility perpendicular and parallel to . The value , where N is the number of mesogens per unit volume. The work per unit volume done by the field is then given by:

where:

Since the term is spatially invariant, it can be ignored and so the magnetic contribution to the distortion free energy density becomes:

From similar arguments the electric field's contribution to the distortion free energy can be found and is given by:

The quantity is the difference between the local dielectric constants perpendicular and parallel to .

Notes

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.

<span class="mw-page-title-main">Electric displacement field</span> Vector field related to displacement current and flux density

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well as the response of dielectrics to an electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.

<span class="mw-page-title-main">Magnetization</span> Physical quantity, density of magnetic moment per volume

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

In mathematical physics, the Hunter–Saxton equation

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

The Fréedericksz transition is a phase transition in liquid crystals produced when a sufficiently strong electric or magnetic field is applied to a liquid crystal in an undistorted state. Below a certain field threshold the director remains undistorted. As the field value is gradually increased from this threshold, the director begins to twist until it is aligned with the field. In this fashion the Fréedericksz transition can occur in three different configurations known as the twist, bend, and splay geometries. The phase transition was first observed by Fréedericksz and Repiewa in 1927. In this first experiment of theirs, one of the walls of the cell was concave so as to produce a variation in thickness along the cell. The phase transition is named in honor of the Russian physicist Vsevolod Frederiks.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

In physics, Landau–de Gennes theory describes the NI transition, i.e., phase transition between nematic liquid crystals and isotropic liquids, which is based on the classical Landau's theory and was developed by Pierre-Gilles de Gennes in 1969. The phenomonological theory uses the tensor as an order parameter in expandiing the free energy density.

References