Double hashing is a computer programming technique used in conjunction with open addressing in hash tables to resolve hash collisions, by using a secondary hash of the key as an offset when a collision occurs. Double hashing with open addressing is a classical data structure on a table .
The double hashing technique uses one hash value as an index into the table and then repeatedly steps forward an interval until the desired value is located, an empty location is reached, or the entire table has been searched; but this interval is set by a second, independent hash function. Unlike the alternative collision-resolution methods of linear probing and quadratic probing, the interval depends on the data, so that values mapping to the same location have different bucket sequences; this minimizes repeated collisions and the effects of clustering.
Given two random, uniform, and independent hash functions and , the th location in the bucket sequence for value in a hash table of buckets is: Generally, and are selected from a set of universal hash functions; is selected to have a range of and to have a range of . Double hashing approximates a random distribution; more precisely, pair-wise independent hash functions yield a probability of that any pair of keys will follow the same bucket sequence.
The secondary hash function should have several characteristics:
In practice:
Let be the number of elements stored in , then 's load factor is . That is, start by randomly, uniformly and independently selecting two universal hash functions and to build a double hashing table . All elements are put in by double hashing using and . Given a key , the -st hash location is computed by:
Let have fixed load factor . Bradford and Katehakis [2] showed the expected number of probes for an unsuccessful search in , still using these initially chosen hash functions, is regardless of the distribution of the inputs. Pair-wise independence of the hash functions suffices.
Like all other forms of open addressing, double hashing becomes linear as the hash table approaches maximum capacity. The usual heuristic is to limit the table loading to 75% of capacity. Eventually, rehashing to a larger size will be necessary, as with all other open addressing schemes.
Peter Dillinger's PhD thesis [3] points out that double hashing produces unwanted equivalent hash functions when the hash functions are treated as a set, as in Bloom filters: If and , then and the sets of hashes are identical. This makes a collision twice as likely as the hoped-for .
There are additionally a significant number of mostly-overlapping hash sets; if and , then , and comparing additional hash values (expanding the range of ) is of no help.
Adding a quadratic term [4] (a triangular number) or even (triple hashing) [5] to the hash function improves the hash function somewhat [4] but does not fix this problem; if:
then
Adding a cubic term [4] or (a tetrahedral number), [1] does solve the problem, a technique known as enhanced double hashing. This can be computed efficiently by forward differencing:
structkey;/// Opaque/// Use other data types when needed. (Must be unsigned for guaranteed wrapping.)externunsignedinth1(structkeyconst*),h2(structkeyconst*);/// Calculate k hash values from two underlying hash functions/// h1() and h2() using enhanced double hashing. On return,/// hashes[i] = h1(x) + i*h2(x) + (i*i*i - i)/6./// Takes advantage of automatic wrapping (modular reduction)/// of unsigned types in C.voidext_dbl_hash(structkeyconst*x,unsignedinthashes[],unsignedintn){unsignedinta=h1(x),b=h2(x),i;hashes[i]=a;for(i=1;i<n;i++){a+=b;// Add quadratic difference to get cubicb+=i;// Add linear difference to get quadratic// i++ adds constant difference to get linearhashes[i]=a;}}
In addition to rectifying the collision problem, enhanced double hashing also removes double-hashing's numerical restrictions on 's properties, allowing a hash function similar in property to (but still independent of) to be used. [1]
A hash function is any function that can be used to map data of arbitrary size to fixed-size values, though there are some hash functions that support variable-length output. The values returned by a hash function are called hash values, hash codes, hash digests, digests, or simply hashes. The values are usually used to index a fixed-size table called a hash table. Use of a hash function to index a hash table is called hashing or scatter-storage addressing.
In computing, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
In computer science, a perfect hash functionh for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
Kademlia is a distributed hash table for decentralized peer-to-peer computer networks designed by Petar Maymounkov and David Mazières in 2002. It specifies the structure of the network and the exchange of information through node lookups. Kademlia nodes communicate among themselves using UDP. A virtual or overlay network is formed by the participant nodes. Each node is identified by a number or node ID. The node ID serves not only as identification, but the Kademlia algorithm uses the node ID to locate values.
Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.
Linear probing is a scheme in computer programming for resolving collisions in hash tables, data structures for maintaining a collection of key–value pairs and looking up the value associated with a given key. It was invented in 1954 by Gene Amdahl, Elaine M. McGraw, and Arthur Samuel and first analyzed in 1963 by Donald Knuth.
Quadratic probing is an open addressing scheme in computer programming for resolving hash collisions in hash tables. Quadratic probing operates by taking the original hash index and adding successive values of an arbitrary quadratic polynomial until an open slot is found.
In cryptography, a universal hashing message authentication code, or UMAC, is a message authentication code (MAC) calculated using universal hashing, which involves choosing a hash function from a class of hash functions according to some secret (random) process and applying it to the message. The resulting digest or fingerprint is then encrypted to hide the identity of the hash function that was used. A variation of the scheme was first published in 1999. As with any MAC, it may be used to simultaneously verify both the data integrity and the authenticity of a message. In contrast to traditional MACs, which are serializable, a UMAC can be executed in parallel. Thus, as machines continue to offer more parallel-processing capabilities, the speed of implementing UMAC can increase.
In cryptography, a one-way compression function is a function that transforms two fixed-length inputs into a fixed-length output. The transformation is "one-way", meaning that it is difficult given a particular output to compute inputs which compress to that output. One-way compression functions are not related to conventional data compression algorithms, which instead can be inverted exactly or approximately to the original data.
Cuckoo hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table, with worst-case constant lookup time. The name derives from the behavior of some species of cuckoo, where the cuckoo chick pushes the other eggs or young out of the nest when it hatches in a variation of the behavior referred to as brood parasitism; analogously, inserting a new key into a cuckoo hashing table may push an older key to a different location in the table.
In mathematics and computing, universal hashing refers to selecting a hash function at random from a family of hash functions with a certain mathematical property. This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known, and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography.
2-choice hashing, also known as 2-choice chaining, is "a variant of a hash table in which keys are added by hashing with two hash functions. The key is put in the array position with the fewer (colliding) keys. Some collision resolution scheme is needed, unless keys are kept in buckets. The average-case cost of a successful search is , where is the number of keys and is the size of the array. The most collisions is with high probability."
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search. It differs from conventional hashing techniques in that hash collisions are maximized, not minimized. Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
In computer science, dynamic perfect hashing is a programming technique for resolving collisions in a hash table data structure. While more memory-intensive than its hash table counterparts, this technique is useful for situations where fast queries, insertions, and deletions must be made on a large set of elements.
In cryptography, Very Smooth Hash (VSH) is a provably secure cryptographic hash function invented in 2005 by Scott Contini, Arjen Lenstra, and Ron Steinfeld. Provably secure means that finding collisions is as difficult as some known hard mathematical problem. Unlike other provably secure collision-resistant hashes, VSH is efficient and usable in practice. Asymptotically, it only requires a single multiplication per log(n) message-bits and uses RSA-type arithmetic. Therefore, VSH can be useful in embedded environments where code space is limited.
In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.
In computer science, a family of hash functions is said to be k-independent, k-wise independent or k-universal if selecting a function at random from the family guarantees that the hash codes of any designated k keys are independent random variables. Such families allow good average case performance in randomized algorithms or data structures, even if the input data is chosen by an adversary. The trade-offs between the degree of independence and the efficiency of evaluating the hash function are well studied, and many k-independent families have been proposed.
Static hashing is a form of hashing where lookups are performed on a finalized dictionary set.
In computer science, a retrieval data structure, also known as static function, is a space-efficient dictionary-like data type composed of a collection of pairs that allows the following operations: