The Draw-A-Scientist Test (DAST) is an open-ended projective test designed to investigate children's perceptions of the scientist. Originally developed by David Wade Chambers in 1983, the main purpose was to learn at what age the well known stereotypic image of the scientist first appeared. Following the simple prompt, "Draw a scientist", 4807 primary school children in three countries completed drawings. The drawings were then analyzed for seven standard indicators: lab coat, eyeglasses, facial hair, symbols of research, symbols of knowledge, products of science (technology) and relevant captions. From these indicators, Chambers was able to show that children began to develop stereotypical views of scientists from a very early age, with a progressively larger number of indicators appearing as the grades progress. [1]
Chambers’ original 1983 DAST, based on surveys conducted between 1966 and 1977, [1] differs significantly, in both purpose and methodology, from the earlier Draw-A-Person and Draw-A-Man projective tests (such as Florence Goodenough in 1926; [2] Harris, 1963; [3] Goodenow, 1977 [4] ), which have been used as a measure of intellectual maturation, to elicit personality type and unconscious material, and as part of neuropsychologic tests for stroke victims. Chambers, rather, was responding to important essays by Margaret Mead and Rhoda Metraux, [5] which identified typical stereotypical images of scientists in high school students, and D. C. Beardslee and D. D. O'Dowd, [6] which was a careful examination of the college student image of the scientist.
Over the next 3 decades, several hundred researchers, mainly in the discipline of education, have used the Chambers DAST to gauge various social, cultural and educational factors in student perception of science and the scientist. Some of these variables are discussed below.
Kevin D. Finson published an extensive review of the DAST literature. [7]
Since the publication of the DAST, several different scientific disciplines have been studied simply by changing the prompt from "Draw a scientist" to "Draw a ..." These include such professions as engineer, chemist, archeologist, psychologist, mathematician, physicist, doctor, (Schibeci & Sorensen, 1982; [8] Hill, 1991; Warren, 1990; Flick, 1990 [9] ),
Chambers 1983 survey included children's images in French and English Canada, Australia and the United States along with a single set of drawings from the People's Republic of China. Schibeci and Sorensen (1983) used the DAST for a study of elementary children in Australia, reporting that the media, primarily television, contributed significantly to reinforcement of the stereotypical image. [10] She (1995) administered a modified DAST to Taiwanese students (grades 1 to 8) including an analysis of how those images may be influenced by science textbooks currently in use in Taiwan. Earlier studies conducted by She showed Taiwan students held very similar stereotypical images of scientists as those in the West. Fung (2002) administered the DAST to Hong Kong Chinese students comparing primary and secondary school student's images. A study of primary students in Ireland (Maoldomhnaigh & Hunt, 1989) revealed that not a single male student drew a female scientist and that only 23 out of 45 female students drew female scientists. Song & Kim (1999) reported that in their study of Korean students, 74 percent described their scientist as male and only 16 percent as female. Buldu (2006) administered DAST to children aged 5–8 years. None of the 24 boys drew female scientists and 5 of 13 girls drew female scientists. Sjøberg (2002) reported on images of scientists in 21 countries. Michalak (2013) reported that when Korean students were asked to depict their perception of a scientist/science from East Asia, Europe, and the Middle East, a hierarchy of time, resources and awareness immediately emerged, with students viewing scientists from Asia as traditional, scientists from Europe as advanced, and scientists from the Middle East as antiquated. [11] The list of countries where the DAST has been administered (and findings have been reported in scientific journals referenced) includes French and English Canada, United States, [12] Brazil, Mexico, Colombia, Bolivia, Uruguay, Chile, Thailand (no evidence of scientific findings), South Korea, [13] Taiwan, Hong Kong, China, Japan, Australia, New Zealand, India, Nigeria, Turkey, France, Italy, Greece, [12] Spain, Germany, Norway, Finland, Sweden, Russia, Poland, Rumania, Slovakia, Ireland and the U.K. Ethnicities studied include Navajo, Black American, Hebrew and Arab. [14]
A range of methodological variations of the original DAST have been developed. The Draw-a-Scientist-Test Revised Prompt (DAST-R) was recommended and tested by David Symington and Heather Spurling (1990). [15] They pointed out that students seemed to be drawing what they perceived to be the public stereotype of a scientist, and not necessarily their own perception. To remedy this problem, Symington and Spurling tested the effect of a revised prompt, "Do a drawing which tells what you know about scientists and their work." They compared drawings done by children given both sets of prompts. The drawings showed enough differences that these researchers concluded their report with a recommendation that the DAST prompt be critically examined for what it was actually asking the students to draw. Finson, Beaver, and Cramond (1995) developed the Draw-A-Scientist Checklist (DAST-C) a revised list of indicators based mainly on those first noted in the Chambers' DAST. [16]
Several researchers have raised other methodological issues. Jarvis & Rennie (1995) thought that the use of drawings without words could represent an abstract idea the observer may be unable to comprehend. They suggested that children be asked to add sentences or annotate their drawings to improve interpretation. Losh, Wilke & Pop (2008) felt that analysis of the DAST is weakened by asking children to draw ‘only scientists’, suggesting that it is unlikely children view scientists as different from other professionals especially in absence of comparison across occupations. Maoldomhnaigh & Hunt (1989) reported that when they asked their subjects to draw two pictures of scientists the frequency of appearance of mythic stereotypes changed from one set of representations to the other leading them to conclude that students might have more than one definition of the word “scientist”. Maoldomhnaigh & Mholain (1990) cautioned that greater care be taken in the standardization of task directions provided to children since different wording could produce differences in the drawings. Chambers responded to these objections by pointing out that, although revised prompts may be very useful in relation to certain revised research objectives, the aims of the original study were well served by using the simplest of prompts to avoid confusion and possible inadvertent signaling to the children of 'what was expected'. Also, since the DAST was first designed to discover at what age the well-known stereotype first appeared, the use of words was not really appropriate when dealing with younger children of limited verbal capacity. Finally, Chambers believed the use of a standardized prompt was desirable to ensure that different studies, across cultures and across time, remain comparable. (Chambers, 1996)
The single most widely studied variable in DAST research has been that of gender. Mead and Metraux (1957) noted that when asked to write essays about scientists, both male and female high school students mostly described male scientists. In the original DAST study, out of nearly 5,000 students tested, 28 girls, and no boys, drew female scientists. [1] (See also Schibeci and Sorenson, 1984; Kelly 1985). To a greater or lesser degree, almost all the hundreds of DAST studies observed this gender divide, as indicated in a recent review of the DAST literature.
"A survey of students from across the United States found that only 14 percent of the drawings by girls and 8 percent of the drawings by boys depicted female scientists, and only 20 of the 1,600 drawings by both girls and boys depicted scientists of color (Fort and Varney 1989). A study of undergraduate biology and liberal studies majors showed that students in both groups drew more male scientists than female scientists, and only female students from both groups drew female scientists (Rosenthal 1993). Another study found that children in kindergarten through twelfth grade primarily drew pictures of male scientists (Barman 1999), and older students were less likely to draw female scientists than were younger students." [17]
Another account from 2009 is typical of the gender analysis found in the interpretation of DAST drawings:
"Females more than males drew their scientist in a laboratory setting with symbols of knowledge such as books, charts, etc. It is also not surprising that males tended to draw their scientist as a male while females drew both male and female scientists. More females drew their scientists with eyeglasses than did the males. However more males drew their scientists as males with symbols of technology and mythical stereotypes. Overall gender analysis confirms a predominantly “manly” image of a scientist irrespective of the country from which the student hails from." (Narayan, 2009)[ citation needed ]
A direct connection between stereotypic images and negative attitudes to science is difficult to establish. In several studies over the next three decades (Smith & Erb, 1986; NSTA, 1992; NSTA, 1993; and Odell, Hewett, Bowman, & Boone, 1993) evidence indicated that negative stereotypes of science and scientists led to negative perceptions, which, in classrooms, led to negative attitudes toward science. At the same time, since scientific stereotypes are by no means exclusively negative, the lessons to be learned for science teaching are more complex. In any case, Chambers pointed out that most adults, even many scientists, utilize the standard indicators to convey graphically the concept “scientist”. [1]
In the psychology of self, one's self-concept is a collection of beliefs about oneself. Generally, self-concept embodies the answer to the question "Who am I?".
Achievement gaps in the United States are observed, persistent disparities in measures of educational performance among subgroups of U.S. students, especially groups defined by socioeconomic status (SES), race/ethnicity and gender. The achievement gap can be observed through a variety of measures, including standardized test scores, grade point average, dropout rates, college enrollment, and college completion rates. The gap in achievement between lower income students and higher income students exists in all nations and it has been studied extensively in the U.S. and other countries, including the U.K. Various other gaps between groups exist around the globe as well.
Stereotype threat is a situational predicament in which people are or feel themselves to be at risk of conforming to stereotypes about their social group. It is theorized to be a contributing factor to long-standing racial and gender gaps in academic performance. Since its introduction into the academic literature, stereotype threat has become one of the most widely studied topics in the field of social psychology.
Claude Mason Steele is a social psychologist and emeritus professor at Stanford University, where he is the I. James Quillen Endowed Dean, Emeritus at the Stanford University Graduate School of Education, and Lucie Stern Professor in the Social Sciences, Emeritus.
The presence of women in science spans the earliest times of the history of science wherein they have made significant contributions. Historians with an interest in gender and science have researched the scientific endeavors and accomplishments of women, the barriers they have faced, and the strategies implemented to have their work peer-reviewed and accepted in major scientific journals and other publications. The historical, critical, and sociological study of these issues has become an academic discipline in its own right.
Mathematical anxiety, also known as math phobia, is a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of mathematical problems in daily life and academic situations.
Sex differences in education are a type of sex discrimination in the education system affecting both men and women during and after their educational experiences. Men are more likely to be literate on a global average, although higher literacy scores for women are prevalent in many countries. Women are more likely to achieve a tertiary education degree compared to men of the same age. Men tended to receive more education than women in the past, but the gender gap in education has reversed in recent decades in most Western countries and many non-Western countries.
Herman George Canady was an American social psychologist. Canady, who was black, was the first psychologist to examine the role of the race of the examiner as a bias factor in IQ testing.
The social construction of gender is a theory in the humanities and social sciences about the manifestation of cultural origins, mechanisms, and corollaries of gender perception and expression in the context of interpersonal and group social interaction. Specifically, the social construction of gender theory stipulates that gender roles are an achieved "status" in a social environment, which implicitly and explicitly categorize people and therefore motivate social behaviors.
Delusions of Gender: How Our Minds, Society, and Neurosexism Create Difference is a 2010 book by Cordelia Fine, written to debunk the idea that men and women are hardwired with different interests. The author criticizes claimed evidence of the existence of innate biological differences between men and women's minds as being faulty and exaggerated, and while taking a position of agnosticism with respect to inherent differences relating to interest/skill in "understanding the world" versus "understanding people", reviews literature demonstrating how cultural and societal beliefs contribute to sex differences.
An implicit bias or implicit stereotype is the pre-reflective attribution of particular qualities by an individual to a member of some social out group.
Women are often under-represented in the academic and professional fields of engineering; however, many women have contributed to the diverse fields of engineering historically and currently. A number of organizations and programs have been created to understand and overcome this tradition of gender disparity. Some have decried this gender gap, saying that it indicates the absence of potential talent. Though the gender gap as a whole is narrowing, there is still a growing gap with minority women compared to their white counterparts. Gender stereotypes, low rates of female engineering students, and engineering culture are factors that contribute to the current situation where men dominate in fields relating to engineering sciences.
Many scholars and policymakers have noted that the fields of science, technology, engineering, and mathematics (STEM) have remained predominantly male with historically low participation among women since the origins of these fields in the 18th century during the Age of Enlightenment.
Sex differences in human intelligence have long been a topic of debate among researchers and scholars. It is now recognized that there are no significant sex differences in average IQ, though particular subtypes of intelligence vary somewhat between sexes.
Gender disparity in computing concerns the disparity between the number of men in the field of computing in relation to the lack of women in the field. Originally, computing was seen as a female occupation. As the field evolved, so too did the demographics, and the gender gap shifted from female dominated to male dominated. The believed need for more diversity and an equal gender gap has led to public policy debates regarding gender equality. Many organizations have sought to create initiatives to bring more women into the field of computing.
Sex differences in education in the United States refers to the specific issues, such as gender-based discrimination related to coursework and use of disciplinary action, that American students of all genders encounter. Furthermore, while sex differences in education explains the prevalence of gender-based differences in education on a global scale, the American education system includes specific forms of gender discrimination dissimilar to other countries.
Female education in STEM refers to child and adult female representation in the educational fields of science, technology, engineering, and mathematics (STEM). In 2017, 33% of students in STEM fields were women.
Films have portrayed professional women in science, technology, engineering, and mathematics (STEM) fields in various ways throughout film history.
Identity safety cues are aspects of an environment or setting that signal to members of stigmatized groups that the threat of discrimination is limited within that environment and / or that their social identities are welcomed and valued. Identity safety cues have been shown to reduce the negative impacts impact of social identity threats, which are when people experience situations where they feel devalued on the basis of a social identity. Such threats have been shown to undermine performance in academic and work-related contexts and make members of stigmatized groups feel as though they do not belong. Identity safety cues have been proposed as a way of alleviating the negative impact of stereotype threat or other social identity threats, reducing disparities in academic performance for members of stigmatized groups, and reducing health disparities caused by identity related stressors.
According to the National Science Foundation (NSF), women and racial minorities are underrepresented in science, technology, engineering, and mathematics (STEM). Scholars, governments, and scientific organizations from around the world have noted a variety of explanations contributing to this lack of racial diversity, including higher levels of discrimination, implicit bias, microaggressions, chilly climate, lack of role models and mentors, and less academic preparation.
The scholarly research literature on the DAST has received wide coverage in the popular press. Much attention has been given to the supposed source of the stereotypical image in pop culture. The internet links below illustrate this point.