In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as
for and the parameters are restricted to .
Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions
RoelofKoekoek,Peter A. Lesky,andRené F. Swarttouw ( 2010 , 14) give a detailed list of their properties.
The dual Hahn polynomials have the orthogonality condition
for . Where ,
and
As the value of increases, the values that the discrete polynomials obtain also increases. As a result, to obtain numerical stability in calculating the polynomials you would use the renormalized dual Hahn polynomial as defined as
for .
Then the orthogonality condition becomes
for
The Hahn polynomials, , is defined on the uniform lattice , and the parameters are defined as . Then setting the Hahn polynomials become the Chebyshev polynomials. Note that the dual Hahn polynomials have a q-analog with an extra parameter q known as the dual q-Hahn polynomials.
Racah polynomials are a generalization of dual Hahn polynomials.
In mathematics, the Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials, introduced by Pafnuty Chebyshev in 1875 and rediscovered by Wolfgang Hahn. The Hahn class is a name for special cases of Hahn polynomials, including Hahn polynomials, Meixner polynomials, Krawtchouk polynomials, and Charlier polynomials. Sometimes the Hahn class is taken to include limiting cases of these polynomials, in which case it also includes the classical orthogonal polynomials.
In mathematics, Charlier polynomials are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomialsPλ
n(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.
In mathematics, Jacobi polynomialsP(α, β)
n(x) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight (1 − x)α(1 + x)β on the interval [−1, 1]. The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.
In mathematics, the Askey scheme is a way of organizing orthogonal polynomials of hypergeometric or basic hypergeometric type into a hierarchy. For the classical orthogonal polynomials discussed in Andrews & Askey (1985), the Askey scheme was first drawn by Labelle (1985) and by Askey and Wilson (1985), and has since been extended by Koekoek & Swarttouw (1998) and Koekoek, Lesky & Swarttouw (2010) to cover basic orthogonal polynomials.
In mathematics, the continuous dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
In mathematics, the continuous q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the continuous dual q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the dual q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the little q-Jacobi polynomialspn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Hahn (1949). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the continuous q-Jacobi polynomialsP(α,β)
n(x|q), introduced by Askey & Wilson (1985), are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the big q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the continuous q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the little q-Laguerre polynomialspn(x;a|q) or Wall polynomialsWn(x; b,q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme closely related to a continued fraction studied by Wall (1941). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the q-Meixner–Pollaczek polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the q-Meixner polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
In mathematics, the q-Laguerre polynomials, or generalized Stieltjes–Wigert polynomialsP(α)
n(x;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme introduced by Daniel S. Moak (1981). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.