Dust Networks

Last updated
Dust Networks, Inc.
Company type Private
IndustrySpecialized semiconductors
Founded2002
Headquarters30695 Huntwood Avenue
Hayward, California
United States
Key people
Kristofer S. J. Pister, co-founder and CTO
Joy Weiss, President and CEO
Products Wireless sensor network devices
Number of employees
c. 45 (2011)
Website www.dustnetworks.com

Dust Networks, Inc. is an American company that specializes in the design and manufacture of wireless sensor networks for industrial applications including process monitoring, condition monitoring, asset management, environment, health and safety (EHS) monitoring, and power management. They were acquired by Linear Technology, Inc in December 2011, which in turn was acquired by Analog Devices, Inc. in 2017. The Dust Networks product team operates in the IoT Networking Platforms group of Analog Devices.

Contents

Dust Networks works with industry and standards groups such as WirelessHART, IEEE and IETF to help drive the adoption of interoperable wireless sensor networking products.

Company history

In 1997, Kristofer S. J. Pister, a professor of electrical engineering and computer sciences at the University of California, Berkeley, conceived of and started the Smart Dust project with DARPA funding.[ citation needed ]

Smart Dust

The Smart Dust project attempted to demonstrate that a complete sensor/communication system could be made of sensors one cubic millimeter in size. This involved advances in miniaturization, integration, and energy management. The project focus was independent of any particular sensor, and looked at both commercial and military applications including:

The project led to the founding of Dust Networks, to provide commercial applications of the above.

Timeline

Technology

Wireless sensor networks attempt to increase transmission reliability and quickly adapt should the transmission fail and automatically route around failed links. This requires embedded networking intelligence that establishes, maintains and utilizes redundant multi-hop routing from source to destination.[ citation needed ]

Dust Networks implements full-mesh networks, sometimes referred to as ‘mesh-to-the-edge’, which provides redundant routing to the edge of the network. In a full-mesh network every device has the same routing capabilities and is able to ‘decide’ where it belongs in the routing structure based on what other nodes it can communicate with, its proximity to the network gateway, and its traffic load. This allows for self-forming and self-healing. The multi-chip modules used to drive these networks are divided into 'gateways' and 'motes' (or mote modules). Gateways then tie back into larger networks used to make decisions within large industrial plants (oil refineries, chemical plants, produce facilities, etc.).[ citation needed ]

The company has evolved from using a proprietary protocol called TSMP (Time Synchronized Mesh Protocol), to WirelessHART to launching an Internet Protocol-based initiative, in support of the Internet Engineering Task Force (IETF), focused on the use of IP networking in urban infrastructure, building automation, utility metering, and other wireless sensor networking applications.[ citation needed ]

See also

Smartdust

Related Research Articles

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low-data-rate, and close proximity wireless ad hoc network.

Smartdust is a system of many tiny microelectromechanical systems (MEMS) such as sensors, robots, or other devices, that can detect, for example, light, temperature, vibration, magnetism, or chemicals. They are usually operated on a computer network wirelessly and are distributed over some area to perform tasks, usually sensing through radio-frequency identification. Without an antenna of much greater size the range of tiny smart dust communication devices is measured in a few millimeters and they may be vulnerable to electromagnetic disablement and destruction by microwave exposure.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.

<span class="mw-page-title-main">Z-Wave</span> Wireless standard for intelligent building networks

Z-Wave is a wireless communications protocol used primarily for residential and commercial building automation. It is a mesh network using low-energy radio waves to communicate from device to device, allowing for wireless control of smart home devices, such as smart lights, security systems, thermostats, sensors, smart door locks, and garage door openers. The Z-Wave brand and technology are owned by Silicon Labs. Over 300 companies involved in this technology are gathered within the Z-Wave Alliance.

<span class="mw-page-title-main">Home network</span> Type of computer network

A home network or home area network (HAN) is a type of computer network that facilitates communication among devices within the close vicinity of a home. Devices capable of participating in this network, for example, smart devices such as network printers and handheld mobile computers, often gain enhanced emergent capabilities through their ability to interact. These additional capabilities can be used to increase the quality of life inside the home in a variety of ways, such as automation of repetitive tasks, increased personal productivity, enhanced home security, and easier access to entertainment.

6LoWPAN was a working group of the Internet Engineering Task Force (IETF). It was created with the intention of applying the Internet Protocol (IP) even to the smallest devices, enabling low-power devices with limited processing capabilities to participate in the Internet of Things.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

TSMP, an acronym for Time Synchronized Mesh Protocol, was developed by Dust Networks as a communications protocol for self-organizing networks of wireless devices called motes. TSMP devices stay synchronized to each other and communicate in time-slots, similar to other TDM systems. Such deterministic communication allows the devices to stay extremely low power, as the radios only turn on for the periods of scheduled communication. The protocol is designed to operate very reliably in a noisy environment. It uses channel hopping to avoid interference -- the packets between TSMP devices get sent on different radio channels depending on time of transmission. TSMP distinguishes itself from other time-slotted mesh-based protocols, in that time-slot timing is maintained continuously and enables a network to duty-cycle on a transmitter-receiver pair-wise basis, as opposed to putting the entire network to sleep for extended periods of time.

The Internet of things (IoT) describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. The Internet of things encompasses electronics, communication, and computer science engineering. "Internet of things" has been considered a misnomer because devices do not need to be connected to the public internet; they only need to be connected to a network and be individually addressable.

<span class="mw-page-title-main">Mike A. Horton</span> American businessman

Mike A. Horton is an American engineer and founder of a company producing sensor technology and sensor-based systems.

The Internet Protocol for Smart Objects (IPSO) Alliance was an international technical standards organization promoting the Internet Protocol (IP) for what it calls "smart object" communications. The IPSO Alliance was a non-profit organization founded in 2008 with members from technology, communications and energy companies. The Alliance advocated for IP networked devices in energy, consumer, healthcare, and industrial uses. On 27 March 2018, the IPSO Alliance merged with the Open Mobile Alliance (OMA) to form OMA SpecWorks.

WirelessHART within telecommunications and computing, is a wireless sensor networking technology. It is based on the Highway Addressable Remote Transducer Protocol (HART). Developed as a multi-vendor, interoperable wireless standard, WirelessHART was defined for the requirements of process field device networks.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

Nivis, LLC is a company that designs and manufactures wireless sensor networks for smart grid and industrial process automation. Target applications include process monitoring, environmental monitoring, power management, security, and the internet of things. The company is headquartered in Atlanta, Georgia, with additional offices in Romania, where much of its technology is developed. The company's product portfolio consists of standards-based wireless communications systems, including radio nodes, routers, management software and a software stack for native communications. Nivis hardware is operated by open source software.

Thread is an IPv6-based, low-power mesh networking technology for Internet of things (IoT) products. The Thread protocol specification is available at no cost; however, this requires agreement and continued adherence to an End-User License Agreement (EULA), which states that "Membership in Thread Group is necessary to implement, practice, and ship Thread technology and Thread Group specifications."

<span class="mw-page-title-main">OpenWSN</span>

OpenWSN is a project created at the University of California Berkeley and extended at the INRIA and at the Open University of Catalonia (UOC) which aims to build an open standard-based and open source implementation of a complete constrained network protocol stack for wireless sensor networks and Internet of Things. The root of OpenWSN is a deterministic MAC layer implementing the IEEE 802.15.4e TSCH based on the concept of Time Slotted Channel Hopping (TSCH). Above the MAC layer, the Low Power Lossy Network stack is based on IETF standards including the IETF 6TiSCH management and adaptation layer. The stack is complemented by an implementation of 6LoWPAN, RPL in non-storing mode, UDP and CoAP, enabling access to devices running the stack from the native IPv6 through open standards.

Time Slotted Channel Hopping or Time Synchronized Channel Hopping (TSCH) is a channel access method for shared-medium networks.

<span class="mw-page-title-main">Develco Products</span> Danish wireless technology producer

Develco Products is a B2B wireless technology producer, headquartered in Aarhus, Denmark. The company was established in 2007 and develops white label devices for B2C solution providers and has over 3,500,000 devices deployed worldwide... Their main business areas are home care, security, and smart energy. They are a member of the Connectivity Standards Alliance as their main technological expertise lies in Zigbee-based devices that communicate through a mesh network. The company claims their most popular product is the Squid.link gateway.

References

  1. "Linear Technology Acquisition of Dust Networks Extends Wireless Sensor Networking Capabilities". Press Release. 20 December 2011. Retrieved 22 February 2012.
  2. "Analog Devices Completes Acquisition of Linear Technology | Analog Devices". www.analog.com. Retrieved 2020-06-25.

37°37′03″N122°03′17″W / 37.617529°N 122.054822°W / 37.617529; -122.054822