Dust defense

Last updated

Dust defense, sometimes called environmental defense, was a proposed anti-ballistic missile (ABM) system considered for protecting both Minuteman and MX Peacekeeper missile silos from Soviet attack.

Contents

Operation

The system works by burying a number of high-yield warheads near the missile field below the anticipated flight corridor of approaching enemy reentry vehicles (warheads). Approximately five to ten minutes before the arrival of the enemy warheads, the dust defense warheads would be detonated, sending a cloud of dust high into the atmosphere. Enemy RVs would strike this cloud of dust at approximately 7 kilometres per second (4.3 mi/s) which would rapidly abrade the RV's heat shield causing the warhead to fail due to reentry heating or for the warhead to be knocked off course. [1]

The effectiveness of the system depended on the hardness of enemy RVs to abrasion and the yield of the weapon used. Approximately 13 million tonnes (330×10^6 kg) of dust would be produced per megaton of warhead yield. While it's possible that an RV could be hardened against the effects of this dust, doing so would carry a steep penalty in RV weight. [2]

Advantages and disadvantages of the system

The advantage of the system compared to more conventional interceptor based ABM systems is that dust defense provides a "screen" that while active provides protection regardless of decoys and the number of warheads used. [2]

Dust defense also has the advantage of being an "unambiguous" defense, in that the system is only seen as suitable for defending hard targets such as ICBM silos and therefore it only protects retaliatory capability. By only protecting retaliatory capability the system is thought to help preserve the balance of mutually assured destruction instead of degrading this balance as an ABM system protecting population centers would. Ignoring the issues of detonating a dust defense warhead near population centers, dust defense only provides protection for thirty minutes to an hour; long enough to allow for ICBMs to launch, but once the dust cloud settles the city remains to be retargeted. [2]

One of the issues with the system is that of a false alarm. Due to fallout and the consequences of detonating a nuclear weapon on your own soil, the consequences of a false alarm are much more severe than in found in interceptor based ABM. [3] However, during a false alarm if a nation is forced to use launch on warning to prevent the destruction of their ICBM force on the ground, a nation would receive massive casualties from the enemy's retaliatory attack. Therefore, a dust defense system to prevent the need for launch on warning would be safer as in a false alarm you have only slightly irradiated some of your nation instead of facing the full brunt of a retaliatory attack. [4]

Dust defense like any other ground burst nuclear detonation would produce fallout. However, the stationary nature of the system means that weight and size is not an issue, so very low fission fraction technologies developed for Project Plowshare could be used to reduce the effects of fallout. One source alleges that fission fractions of less than 2% in a 100 kilotonnes of TNT (0.42 PJ) weapon would be possible. This would be less than a percent of the fission produced by Soviet warheads the system stops. [5] Another source claims that by assembling the weapons inside underground vaults and then surrounding the weapons with borated water (which readily absorbs neutrons), fission fractions could be reduced to 1% of that of a conventional fission fraction weapon. [6]

Variations

A variation of dust defense was proposed to instead time detonation to several seconds before the RVs detonated. Instead of destroying enemy RVs through dust, this would destroy RVs through the impact (instead of abrasion) of material thrown up by the blast. This proposal was believed to have a greater chance of success than the abrasion concept (which was thought to require testing and had uncertainties) while also providing a cloud of abrasive dust that could also destroy RVs. This system was proposed to defend Dense Pack. [7]

Dense pack itself was based on the dust defense concept, except in its basic form the dust was created by Soviet warheads attacking dense pack. [7]

See also

Ash Carter  Author of Ballistic Missile Defense and later US Secretary of Defense.

Related Research Articles

<span class="mw-page-title-main">Anti-ballistic missile</span> Surface-to-air missile designed to counter ballistic missiles

An anti-ballistic missile (ABM) is a surface-to-air missile designed to counter ballistic missiles. Ballistic missiles are used to deliver nuclear, chemical, biological, or conventional warheads in a ballistic flight trajectory. The term "anti-ballistic missile" is a generic term conveying a system designed to intercept and destroy any type of ballistic threat; however, it is commonly used for systems specifically designed to counter intercontinental ballistic missiles (ICBMs).

<span class="mw-page-title-main">Anti-Ballistic Missile Treaty</span> 1972 arms control treaty between the United States and the Soviet Union

The Anti-Ballistic Missile Treaty, also known as the ABM Treaty or ABMT, was an arms control treaty between the United States and the Soviet Union on the limitation of the anti-ballistic missile (ABM) systems used in defending areas against ballistic missile-delivered nuclear weapons. It was intended to reduce pressures to build more nuclear weapons to maintain deterrence. Under the terms of the treaty, each party was limited to two ABM complexes, each of which was to be limited to 100 anti-ballistic missiles.

<span class="mw-page-title-main">Intercontinental ballistic missile</span> Ballistic missile with a range of more than 5,500 kilometres

An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery. Conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. The United States, Russia, China, France, India, the United Kingdom, Israel, and North Korea are the only countries known to have operational ICBMs.

<span class="mw-page-title-main">Multiple independently targetable reentry vehicle</span> Ballistic missile payload containing multiple warheads which are independently targetable

A multiple independently targetable reentry vehicle (MIRV) is an exoatmospheric ballistic missile payload containing several warheads, each capable of being aimed to hit a different target. The concept is almost invariably associated with intercontinental ballistic missiles carrying thermonuclear warheads, even if not strictly being limited to them. An intermediate case is the multiple reentry vehicle (MRV) missile which carries several warheads which are dispersed but not individually aimed. Only the United States, the United Kingdom, France, Russia and China are currently confirmed to have deployed MIRV missile systems. Pakistan is developing MIRV missile systems. Israel is suspected to possess or be in the process of developing MIRVs.

<span class="mw-page-title-main">Chevaline</span> British nuclear missile decoy and penetration aid system

Chevaline was a system to improve the penetrability of the warheads used by the British Polaris nuclear weapons system. Devised as an answer to the improved Soviet anti-ballistic missile defences around Moscow, the system increased the probability that at least one warhead would penetrate Moscow's anti-ballistic missile (ABM) defences, something which the Royal Navy's earlier UGM-27 Polaris re-entry vehicles (RVs) were thought to be unlikely to do.

<span class="mw-page-title-main">START II</span> 1993 nuclear arms reduction treaty between the US and Russia

START II was a bilateral treaty between the United States and Russia on the Reduction and Limitation of Strategic Offensive Arms. It was signed by US President George H. W. Bush and Russian President Boris Yeltsin on 3 January 1993, banning the use of multiple independently targetable re-entry vehicles (MIRVs) on intercontinental ballistic missiles (ICBMs). Hence, it is often cited as the De-MIRV-ing Agreement.

<span class="mw-page-title-main">UGM-133 Trident II</span> US/UK SLBM

The UGM-133A Trident II, or Trident D5 is a submarine-launched ballistic missile (SLBM), built by Lockheed Martin Space in Sunnyvale, California, and deployed with the United States and Royal Navy. It was first deployed in March 1990, and remains in service. The Trident II Strategic Weapons System is an improved SLBM with greater accuracy, payload, and range than the earlier Trident C-4. It is a key element of the U.S. strategic nuclear triad and strengthens U.S. strategic deterrence. The Trident II is considered to be a durable sea-based system capable of engaging many targets. It has payload flexibility that can accommodate various treaty requirements, such as New START. The Trident II's increased payload allows nuclear deterrence to be accomplished with fewer submarines, and its high accuracy—approaching that of land-based missiles—enables it to be used as a first strike weapon.

<span class="mw-page-title-main">Missile defense</span> System that destroys attacking missiles

Missile defense is a system, weapon, or technology involved in the detection, tracking, interception, and also the destruction of attacking missiles. Conceived as a defense against nuclear-armed intercontinental ballistic missiles (ICBMs), its application has broadened to include shorter-ranged non-nuclear tactical and theater missiles.

<span class="mw-page-title-main">Safeguard Program</span> System designed to protect U.S. missile silos

The Safeguard Program was a U.S. Army anti-ballistic missile (ABM) system designed to protect the U.S. Air Force's Minuteman ICBM silos from attack, thus preserving the US's nuclear deterrent fleet. It was intended primarily to protect against the very small Chinese ICBM fleet, limited Soviet attacks and various other limited-launch scenarios. A full-scale attack by the Soviets would easily overwhelm it. It was designed to allow gradual upgrades to provide similar lightweight coverage over the entire United States over time.

<span class="mw-page-title-main">Maneuverable reentry vehicle</span> Ballistic missile whose warhead capable of changing trajectory

The maneuverable reentry vehicle is a type of warhead for ballistic missiles that is capable of maneuvering and changing its trajectory.

<span class="mw-page-title-main">Sprint (missile)</span> Anti-ballistic missile

The Sprint was a two-stage, solid-fuel anti-ballistic missile (ABM), armed with a W66 enhanced-radiation thermonuclear warhead used by the United States Army during 1975–76. It was designed to intercept incoming reentry vehicles (RV) after they had descended below an altitude of about 60 kilometres (37 mi), where the thickening air stripped away any decoys or radar reflectors and exposed the RV to observation by radar. As the RV would be traveling at about 5 miles per second, Sprint needed to have phenomenal performance to achieve an interception in the few seconds before the RV reached its target.

<span class="mw-page-title-main">W71</span> American thermonuclear weapon

The W71 nuclear warhead was a US thermonuclear warhead developed at Lawrence Livermore National Laboratory in California and deployed on the LIM-49A Spartan missile, a component of the Safeguard Program, an anti-ballistic missile (ABM) defense system briefly deployed by the US in the 1970s.

<span class="mw-page-title-main">W62</span> American thermonuclear warhead designed in the late 1960s

The W62 was an American thermonuclear warhead designed in the 1960s and manufactured from March 1970 to June 1976. Used on some Minuteman III ICBMs, it was partially replaced by the W78 starting in December 1979, and fully replaced by W87 warheads removed from MX Peacekeeper missiles and retired in 2010.

Dense Pack is a strategy for basing intercontinental ballistic missiles (ICBMs) for the purpose of maximizing their survivability in case of a surprise nuclear first strike on their silos conducted by a hostile foreign power. The strategy was developed under the Reagan administration as a means of safeguarding America's inventory of MX missiles during the final decade of the Cold War. It was never used; MX was deployed in existing silos and then removed from service as the Cold War ended.

A penetration aid is a device or tactic used to increase an aircraft's capability of reaching its target without detection, and in particular intercontinental ballistic missile (ICBM) warhead's chances of penetrating a target's defenses.

In nuclear strategy, a counterforce target is one that has a military value, such as a launch silo for intercontinental ballistic missiles, an airbase at which nuclear-armed bombers are stationed, a homeport for ballistic missile submarines, or a command and control installation.

<span class="mw-page-title-main">Nike Zeus</span> Type of anti-ballistic missile

Nike Zeus was an anti-ballistic missile (ABM) system developed by the United States Army during the late 1950s and early 1960s that was designed to destroy incoming Soviet intercontinental ballistic missile warheads before they could hit their targets. It was designed by Bell Labs' Nike team, and was initially based on the earlier Nike Hercules anti-aircraft missile. The original, Zeus A, was designed to intercept warheads in the upper atmosphere, mounting a 25 kiloton W31 nuclear warhead. During development, the concept changed to protect a much larger area and intercept the warheads at higher altitudes. This required the missile to be greatly enlarged into the totally new design, Zeus B, given the tri-service identifier XLIM-49, mounting a 400 kiloton W50 warhead. In several successful tests, the B model proved itself able to intercept warheads, and even satellites.

<span class="mw-page-title-main">Nike-X</span> Anti-ballistic missile system

Nike-X was an anti-ballistic missile (ABM) system designed in the 1960s by the United States Army to protect major cities in the United States from attacks by the Soviet Union's intercontinental ballistic missile (ICBM) fleet during the Cold War. The X in the name referred to its experimental basis and was supposed to be replaced by a more appropriate name when the system was put into production. This never came to pass; in 1967 the Nike-X program was canceled and replaced by a much lighter defense system known as Sentinel.

<span class="mw-page-title-main">Sentinel program</span> Proposed US Army anti-ballistic missile system

Sentinel was a proposed US Army anti-ballistic missile (ABM) system designed to provide a light layer of protection over the entire United States, able to defend against small ICBM strikes like those expected from China, or accidental launches from the USSR or other states. The system would have seventeen bases, each centered on its Missile Site Radar (MSR) and a computerized command center buried below it. The system was supported by a string of five long-range Perimeter Acquisition Radars (PAR) spread across the US/Canada border area and another in Alaska. The primary weapon was the long-range Spartan missile, with short range Sprint missiles providing additional protection near US ICBM fields and PAR sites. The system would initially have a total of 480 Spartan and 192 Sprint missiles.

Swarmjet was an extremely short-range single-shot anti-ballistic missile (ABM) system proposed by the United States as a defensive measure during the development of the MX missile. It consisted of a launcher containing thousands of spin-stabilized unguided rockets that would be fired into the path of an enemy nuclear warhead, enough that it would be highly likely one of the rockets would hit the warhead and destroy it.

References

  1. Carter, Ashton; Schwartz, David, eds. (December 1984). Ballistic Missile Defense. pp. 89–90. ISBN   9780815705765.
  2. 1 2 3 Ballistic Missile Defense, p. 89-90.
  3. Ballistic Missile Defense, p. 121.
  4. Ballistic Missile Defense, p. 91.
  5. Ballistic Missile Defense, p. 395-396.
  6. MX Missile Basing. Office of Technology Assessment. September 1981. pp. 126–127.
  7. 1 2 Ballistic Missile Defense, p. 145-146.