Dynamic aperture (accelerator physics)

Last updated

The dynamic aperture is the stability region of phase space in a circular accelerator.

Contents

For hadrons

In the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings), there is minimal radiation, and hence the dynamics is symplectic. For long term stability, tiny dynamical diffusion (or Arnold diffusion) can lead an initially stable orbit slowly into an unstable region. This makes the dynamic aperture problem particularly challenging. One may be considering stability over billions of turns. A scaling law for Dynamic aperture vs. number of turns has been proposed by Giovannozzi. [1]

For electrons

For the case of electrons, the electrons will radiate which causes a damping effect. This means that one typically only cares about stability over thousands of turns.

Methods to compute or optimize dynamic aperture

The basic method for computing dynamic aperture involves the use of a tracking code. A model of the ring is built within the code that includes an integration routine for each magnetic element. The particle is tracked many turns and stability is determined.

In addition, there are other quantities that may be computed to characterize the dynamics, and can be related to the dynamic aperture. One example is the tune shift with amplitude.

There have also been other proposals for approaches to enlarge dynamic aperture, such as: [2]

Related Research Articles

A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

Synchrotron Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 teraelectronvolts (TeV).

Dynamic nuclear polarization (DNP) results from transferring spin polarization from electrons to nuclei, thereby aligning the nuclear spins to the extent that electron spins are aligned. Note that the alignment of electron spins at a given magnetic field and temperature is described by the Boltzmann distribution under the thermal equilibrium. It is also possible that those electrons are aligned to a higher degree of order by other preparations of electron spin order such as: chemical reactions, optical pumping and spin injection. DNP is considered one of several techniques for hyperpolarization. DNP can also be induced using unpaired electrons produced by radiation damage in solids.

KEK organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

Llewellyn Thomas British physicist and applied mathematician of Thomas precession fame

Llewellyn Hilleth Thomas was a British physicist and applied mathematician. He is best known for his contributions to atomic and molecular physics and solid-state physics. His key achievements include calculating relativistic effects on the spin-orbit interaction in a hydrogen atom, creating an approximate theory of -body quantum systems, and devising an efficient method for solving tridiagonal system of linear equations.

SIESTA (computer program) computer program

SIESTA is an original method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA's efficiency stems from the use of strictly localized basis sets and from the implementation of linear-scaling algorithms which can be applied to suitable systems. A very important feature of the code is that its accuracy and cost can be tuned in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as plane-wave and all-electron methods.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13).

Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics or the computational chemistry software package used to implement this method.

Atomtronics is an emerging sub-field of ultracold atomic physics which encompasses a broad range of topics featuring guided atomic matter waves. The systems typically include components analogous to those found in electronic or optical systems, such as beam splitters and transistors. Applications range from studies of fundamental physics to the development of practical devices.

Strong focusing principle in accelerator physics

In accelerator physics strong focusing or alternating-gradient focusing is the principle that the net effect on a particle beam of charged particles passing through alternating field gradients is to make the beam converge. By contrast, weak focusing is the principle that nearby circles, described by charged particles moving in a uniform magnetic field, only intersect once per revolution.

Particle accelerator device to propel charged particles to high speeds

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

Storage ring Type of particle accelerator

A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons.

Collision cascade a set of nearby adjacent energetic (much higher than ordinary thermal energies) collisions of atoms induced by an energetic particle in a solid or liquid

A collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.

A trion is a localized excitation which consists of three charged particles. A negative trion consists of two electrons and one hole and a positive trion consists of two holes and one electron. The trion itself is a quasiparticle and is somewhat similar to an exciton, which is a complex of one electron and one hole. The trion has a ground singlet state and an excited triplet state. Here singlet and triplet degeneracies originate not from the whole system but from the two identical particles in it. The half-integer spin value distinguishes trions from excitons in many phenomena; for example, energy states of trions, but not excitons, are split in an applied magnetic field. Trion states were predicted theoretically in 1958; they were observed experimentally in 1993 in CdTe/Cd1−xZnxTe quantum wells, and later in various other optically excited semiconductor structures. There are experimental proofs of their existence in nanotubes supported by theoretical studies. Despite numerous reports of experimental trion observations in different semiconductor heterostructures, there are serious concerns on the exact physical nature of the detected complexes. The originally foreseen 'true' trion particle has a delocalized wavefunction while recent studies reveal significant binding from charged impurities in real semiconductor quantum wells.

The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube LINAC and RF cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively.

The following timeline starts with the invention of the modern computer in the late interwar period.

Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz. In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level.

Breit–Wheeler process

The Breit–Wheeler process or Breit–Wheeler pair production is a physical process in which a positron–electron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta.

Elihu Abrahams was a theoretical physicist, specializing in condensed matter physics. He is mostly notable for his work on electron transport in disordered systems.

In mathematics and physics, surface growth refers to models used in the dynamical study of the growth of a surface, usually by means of a stochastic differential equation of a field.

References

  1. Giovannozzi, M. (2012). "M. Giovannozzi, "Scaling law for Dynamic Aperture"". Physical Review Special Topics: Accelerators and Beams. 15 (2). doi: 10.1103/PhysRevSTAB.15.024001 .
  2. Wan, Weishi; Cary, John R. (2001). "W. Wan, J. Cary, "Method of enlarging dynamic aperture"". Physical Review Special Topics: Accelerators and Beams. 4 (8). doi: 10.1103/PhysRevSTAB.4.084001 .