The Dynix Automated Library System was a popular integrated library system, with a heyday from the mid-1980s to the late-1990s. It was used by libraries to replace the paper-based card catalog, and track lending of materials from the library to patrons. [2]
First developed in 1983, it eventually became the most popular library automation software ever released, and was once near-ubiquitous in libraries boasting an electronic card catalog, peaking at over 5,000 installations worldwide in the late 1990s, with a market share of nearly 80%, [3] including the United States' Library of Congress.
Typical of 1980s software technology, Dynix had a character-based user interface, involving no graphics except ASCII art/ANSI art boxes.
The first installation, in 1983, was at a public library in Kershaw County, South Carolina. The library actually contracted for the system before the software was written. In the words of Paul Sybrowsky, founder of Dynix: "There was no software, no product. Undaunted, we pitched our plan to create an automated library system to a public library in South Carolina. We didn't have a product, but we said 'You need a system and we'd like to bid on it,' and showed them our business plan." [4]
The original Dynix library system was based on software developed at CTI (Computer Translation Incorporated) which was a development project of Brigham Young University, and presided over by Gary Carlson. The initial search engine tools: FSELECT and FSORT were written for the PICK operating system under contract for CTI by Walter Nicholes as part of a bid for a research support systems for AT&T laboratories. Paul Sybrowsky was an employee of CTI. (As was Bruce Park, founder of ALII library systems, later GEAC Library Systems.) Both library systems (Dynix and ALII) were based on these PICK based search engine tools.
In 1984, Eyring Research Institute acquired 80 percent of Dynix. [5] Then in 1986, the executives and employees bought out Eyring Research's share and became independent again. [6] In 1987, a New Jersey firm called the Ultimate Corporation purchased a minority share of Dynix. [5]
Dynix use grew quickly in the early-and-mid 1990s. In October 1989, Dynix had just 292 installations. [7] Fifteen months later, in January 1991, it was up 71% to 500 installations. [8] A year-and-a-half later, in June 1993, Dynix had doubled its installed base, signing its 1,000th contract. [9] At its peak in the late 1990s, Dynix had over 5,000 libraries using its system, amounting to an 80% market share.
The company selling the Dynix software changed hands several more times. [10] [11] When mostly independent it was called Dynix Systems, Inc. In January 1992, Dynix Systems was acquired by Ameritech. [12] Dynix and NOTIS Systems (maker of NOTIS), which Ameritech purchased in October 1991, were consolidated into Ameritech Library Services (ALS) in 1994. [12] In November 1999, Ameritech sold Ameritech Library Systems to a pair of investment companies, the 21st Century Group and Green Leaf Ridge Company, which rebranded ALS as epixtech. [12] [13] In 2003, epixtech reverted to using the Dynix name. [14]
The customer base for Dynix did not begin decreasing until 2000, [15] at which point it started being replaced by Internet-based interfaces (so-called "Web PACs"). In 2003, it was reported that Dynix was being phased out by its manufacturer, and approaching "end-of-life" status in terms of functionality and support. [16] By 2004, its market share was down to 62%, still a comfortable majority. [15]
In June 2005, SirsiDynix was formed by the merger of the Dynix Corporation and the Sirsi Corporation.
Phase-outs of Dynix were constant in the late 2000s, and by the second decade of the 21st century, it was obsolete and remained in very few libraries. [3] By mid-2013, only 88 libraries were on record as having Dynix installed. [17] The majority of phase-outs took place between 2002 and 2007.
At one point, Dynix was benchmarked supporting 1,600 terminals on a single system. [18] This stability would later come in handy; the largest installations ever were the King County Library System in the greater Seattle area, which was largest by collection size (tens of millions of cataloged items), and New York Public Library in New York City, which covered the largest geographical area with 87 branches (requiring dumb terminals numbering into the thousands).[ citation needed ]
Several specialized versions were released, all nearly identical to the mainstream version. For academic libraries, primarily K-12, there was Dynix Scholar (an Intel 80xxx-based microcomputer version of regular Dynix). For very small libraries, with perhaps only one or two terminals, there was Dynix Elite. The original Dynix system, as used in regular public libraries, was renamed Dynix Classic later in its lifespan to distinguish it from other Dynix products. [19]
This section needs additional citations for verification .(March 2022) |
Based around a relational database, Dynix was originally written in Pick/BASIC and run on the PICK operating system. In 1990, it was ported to VMark's uniVerse BASIC programming language, and run on Unix-based servers, with uniVerse acting as a PICK emulation layer between the software and the operating system. In the late 1990s, Dynix was once again re-ported, this time for Windows NT-based servers; again, uniVerse acted as a Pick emulator between the software and the operating system.
Pick/BASIC and uniVerse BASIC are the same programming language, so porting Dynix did not require re-writing the source code. In the words of one Dynix developer, "[Dynix] was programmed in Pick/BASIC ... however, as it matured, it was written in uniVerse BASIC ... It was never re-written. That type of BASIC isn't easy to move to any other language. None other handles data as well. It's a very fast-compiled and -interpreted language, and frankly nothing matches it, then or now. It's too bad that it (uniVerse BASIC) was so good, because it didn't make the transition to object-oriented Web-based technology in time to stay afloat."
The software was originally written on computers made by The Ultimate Corp. of East Hanover, New Jersey, which ran Ultimate's proprietary implementation of the PICK operating system. Later, Dynix moved to IBM RISC/6000-based computers running AIX throughout the company, except in Training, which used SCO Unix. While most libraries purchased the same type of servers as Dynix was using, there were installations done on platforms such as DEC and MIPS, Sequent, Sequoia (which used a very expensive native PICK), HP's Unix servers, etc. The Dynix corp. could do software-only installs to any compliant Unix because of uniVerse's scalability and adaptability.
Dynix was originally developed around the ADDS Viewpoint A2 terminal's escape sequences, because ADDS terminals were the de facto standard on the PICK-based mainframes on which Dynix was created. Shortly after Dynix started being deployed to libraries around the country, requests started coming back that alternate terminals be provided for patron use; children would bang on the keyboards or throw books at the terminals, or use unauthorized key sequences to mess up the programming. In response, Dynix asked Wyse to develop such a terminal; Wyse created the WY-30, which was a stripped-down version of the best-selling terminal ever made, the WY-60. The swivel base was removed so that the terminal sat flat on whatever surface it was placed on; what the unit now lacked in viewing-angle adjustability, it made up for in physical stability (it could not be knocked over by the force of a child). A specially-designed keyboard reduced the number of keys from 101 to 83, mainly by removing all the function keys; this was designed to keep users out of the internal setup functions and other parts of the software they "weren't supposed to be going". To maintain compatibility with how Dynix was already written, the WY-30 supported the Adds Viewpoint A2 emulation, which was actually one of the only emulations on the terminal. They WY-30 had very few emulations compared to most Wyse products, and notably did not support VT100 or any other ANSI emulations. Years later, when the Dynix company was moving from Ultimate computers running Pick/OS to IBM computers running AIX and uniVerse, compatibility for VT100/102/340 terminals was added to the software; then, other models of Wyse terminal started coming into favor, such as the WY-60 and WY-150, which were easier on the eyes and hands than the WY-30 was.
The complete Dynix Classic approached 900,000 lines of source code, and compiled at around 120 MB. It was distributed via tape drive, first on 1/2" reel-to-reel tape, then later 1/4" cartridge tapes for Dynix Elite users, and 8mm cartridges for everyone else.
One reason for Dynix's success was that an entire library consortium could be run off of just one server, in one location, with one copy of the software. This meant that a library system with multiple branches—whether a large single-city system such as the one in New York City, or whether a consortium made of several small cities/towns banded together—could pool their funds and only have to purchase one server and one copy of the software. Each branch had their own Circulation module, but the actual catalog database was a single copy on one server in a central location. Each record had a line in it stating which actual branch the item belonged to, allowing users to request holds/transfers from another branch to their branch, as well as see whether it was checked in or out at its home branch. This saved a significant sum of money—millions of dollars, in the case of the largest installations—versus Dynix's competitors, who required a separate server and copy of the software in each library branch.
With the single copy of the Dynix software installed on a central server, both patrons and librarians could access it by using dumb terminals. The technology for linking the terminals to the server within each building, and linking the separate buildings (branches) together to the central server location, changed over time as technology progressed. The earliest method was to have the entire system connected via RS-232; there would be many muxes (statistical multiplexers) and many miles of serial lines. Muxes were the phone company's solution for connecting serial lines between branches. Later, dumb terminals were connected via RS-232 to a terminal server, which in turn connected via Ethernet to the branch's LAN. The separate branches would be connected to the central Dynix server via IP-based methods (the Internet). The latest installations used PC's running terminal emulation software, and connecting to the Dynix server via telnet over the Internet.
Dynix was made up of several different modules, each of which was purchased independently to create a scaled system based on the library's size and needs. A library could buy as few as two modules. The two basic modules were Cataloging ($15,000 + $1,500 annual maintenance), and Circulation ($12,000 + $1,200 annual maintenance). Some of the other modules included Kids' Catalog, Bookmobile, Homebound, Media Scheduling, Reserve Bookroom, TeleCirc, DebtCollect, Electronic Notification System, and Self Check-Out. A Dialcat/DialPac module was offered, allowing patrons with a modem and terminal emulation software to dial in from home and search the card catalog or renew books.
Programs with a text-based interface, such as Dynix, are described as being either "menu-driven" or "command-line-driven", referring to how users interact with the software. Dynix was actually a hybrid of both; the patrons used a menu-driven interface, where they would be given a numbered list of options, and simply have to key in the number of the option they wanted in order to navigate through the system. Unknown to the patrons, the librarians had the ability to manipulate the system in the command-line-driven way, by keying in special codes at the same prompts where patrons would key in menu item numbers. These codes, referred to a "dot commands" due to their structure of being a period followed by one or two letters (such as '.c' to switch between checkout and checkin screens in to the Circulation module), allowed librarians access to advanced/hidden features of the Dynix system, and—along with password-protection—prevented patrons from gaining unauthorized levels of access. [20] [21]
In computer networking, a thin client, sometimes called slim client or lean client, is a simple (low-performance) computer that has been optimized for establishing a remote connection with a server-based computing environment. They are sometimes known as network computers, or in their simplest form as zero clients. The server does most of the work, which can include launching software programs, performing calculations, and storing data. This contrasts with a rich client or a conventional personal computer; the former is also intended for working in a client–server model but has significant local processing power, while the latter aims to perform its function mostly locally.
A terminal emulator, or terminal application, is a computer program that emulates a video terminal within some other display architecture. Though typically synonymous with a shell or text terminal, the term terminal covers all remote terminals, including graphical interfaces. A terminal emulator inside a graphical user interface is often called a terminal window.
A Beowulf cluster is a computer cluster of what are normally identical, commodity-grade computers networked into a small local area network with libraries and programs installed which allow processing to be shared among them. The result is a high-performance parallel computing cluster from inexpensive personal computer hardware.
A computer terminal is an electronic or electromechanical hardware device that can be used for entering data into, and transcribing data from, a computer or a computing system. Most early computers only had a front panel to input or display bits and had to be connected to a terminal to print or input text through a keyboard. Teleprinters were used as early-day hard-copy terminals and predated the use of a computer screen by decades. The computer would typically transmit a line of data which would be printed on paper, and accept a line of data from a keyboard over a serial or other interface. Starting in the mid-1970s with microcomputers such as the Sphere 1, Sol-20, and Apple I, display circuitry and keyboards began to be integrated into personal and workstation computer systems, with the computer handling character generation and outputting to a CRT display such as a computer monitor or, sometimes, a consumer TV, but most larger computers continued to require terminals.
The Microsoft Windows Script Host (WSH) is an automation technology for Microsoft Windows operating systems that provides scripting abilities comparable to batch files, but with a wider range of supported features. This tool was first provided on Windows 95 after Build 950a on the installation discs as an optional installation configurable and installable by means of the Control Panel, and then a standard component of Windows 98 and subsequent and Windows NT 4.0 Build 1381 and by means of Service Pack 4. The WSH is also a means of automation for Internet Explorer via the installed WSH engines from IE Version 3.0 onwards; at this time VBScript became means of automation for Microsoft Outlook 97. The WSH is also an optional install provided with a VBScript and JScript engine for Windows CE 3.0 and following and some third-party engines including Rexx and other forms of Basic are also available.
The Pick Operating System, also known as the Pick System or simply Pick, is a demand-paged, multi-user, virtual memory, time-sharing computer operating system based around a MultiValue database. Pick is used primarily for business data processing. It is named after one of its developers, Dick Pick.
Attachmate Corporation is a 1982-founded software company which focused on secure terminal emulation, legacy integration, and managed file transfer software. Citrix-compatibility and Attachment Reflection were enhanced/added offerings.
An integrated library system (ILS), also known as a library management system (LMS), is an enterprise resource planning system for a library, used to track items owned, orders made, bills paid, and patrons who have borrowed.
VTLS Inc. was a global company that provided library automation software and services to a diverse customer base of more than 1900 libraries in 44 countries. The for-profit company was founded in 1985 by Dr. Vinod Chachra, who became the President and CEO of the company. VTLS originated as "Virginia Tech Library Systems", an automated circulation and cataloging system created for Virginia Tech’s Newman Library in 1975. In addition to its headquarters in Blacksburg, Virginia, United States, VTLS had five international offices in Australia, Brazil, India, Malaysia and Spain. VTLS was one of the few ISO 9001:2008 quality-certified companies within the library industry for many years. The company was acquired by Innovative Interfaces in 2014.
Evergreen is an open-source integrated library system (ILS), initially developed by the Georgia Public Library Service for Public Information Network for Electronic Services (PINES), a statewide resource-sharing consortium with over 270 member libraries.
A computer appliance is a computer system with a combination of hardware, software, or firmware that is specifically designed to provide a particular computing resource. Such devices became known as appliances because of the similarity in role or management to a home appliance, which are generally closed and sealed, and are not serviceable by the user or owner. The hardware and software are delivered as an integrated product and may even be pre-configured before delivery to a customer, to provide a turn-key solution for a particular application. Unlike general purpose computers, appliances are generally not designed to allow the customers to change the software and the underlying operating system, or to flexibly reconfigure the hardware.
SirsiDynix is a United States company which produces integrated library system (ILS) software and associated services for libraries.
In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device.
Maestro I was an early integrated development environment for software. developed by Softlab Munich in the 1970s and 1980s.
Alexandria is browser based cross-platform library automation software used by thousands of libraries around the world, both public libraries and school libraries. These include the Houston Independent School District, Philadelphia Public Schools, and the Berkeley Unified School District.
The Library Corporation (TLC) creates and distributes automation and cataloging software to public, school, academic, and special library systems worldwide. Based in Inwood, West Virginia, with additional offices in Denver, Singapore, and Ontario, the company is owned and operated by the same family who established it in 1974.
Wyse Technology, Inc., or simply Wyse, was an independent American manufacturer of cloud computing systems. As of 2012, Wyse is a subsidiary of Dell. Wyse are best remembered for their video terminal line introduced in the 1980s, which competed with the market-leading Digital. They also had a successful line of IBM PC compatible workstations in the mid-to-late 1980s. But starting late in the decade, Wyse were outcompeted by companies such as eventual parent Dell. Current products include thin client hardware and software as well as desktop virtualization solutions. Other products include cloud software-supporting desktop computers, laptops, and mobile devices. Dell Cloud Client Computing is partnered with IT vendors such as Citrix, IBM, Microsoft, and VMware.
NOTIS was a seminal integrated library system first created at Northwestern University, Evanston, IL USA in 1968. John P. McGowan, University Librarian from 1971 to 1992, recruited Professor James S. Aagaard to spearhead the project as lead programmer, and Velma Veneziano as systems analyst.
Rocket U2 is a suite of database management (DBMS) and supporting software now owned by Rocket Software. It includes two MultiValue database platforms: UniData and UniVerse. Both of these products are operating environments which run on current Unix, Linux and Windows operating systems. They are both derivatives of the Pick operating system. The family also includes developer and web-enabling technologies including SB/XA, U2 Web Development Environment (WebDE), UniObjects connectivity API and wIntegrate terminal emulation software.
AlphaCom is a commercial SSH, Telnet and RS-232/modem client and terminal emulator by OmniCom Technologies. It is a Windows product but has been known to also run on Linux via emulation.