EL/M-2075 Phalcon

Last updated
EL/M-2075 Phalcon
EB-707 Condor, Chilean Air Force (FACh) v2.jpg
A Chilean Air Force Phalcon
Country of origin Israel
IntroducedMay 1994
Typesolid-state L-band conformal array radar

The EL/M-2075 Phalcon is an airborne early warning and control (AEW&C) active electronically scanned array radar system developed by Israel Aerospace Industries (IAI) and Elta Electronics Industries of Israel. Its primary objective is to provide intelligence to maintain air superiority and conduct surveillance. It was surpassed by newer versions—the EL/W-2085 and the EL/W-2090.

Contents

Design and features

The EL/M-2075 is a solid-state L-band conformal array radar system for use on a Boeing 707 and other aircraft. Phalcon, as the complete AEW mission suite is referred to, is intended for airborne early warning, tactical surveillance of airborne and surface targets and intelligence gathering. It also integrates the command and control capabilities needed to employ this information. The system uses six panels of phased-array elements: two on each side of the fuselage, one in an enlarged nosecone and one under the tail. Each array consists of 768 liquid-cooled, solid-state transmitting and receiving elements, each of which is weighted in phase and amplitude. These elements are driven by individual modules and every eight modules are connected to a transmit/receive group. Groups of 16 of these eight module batches are linked back to what is described as a prereceive/transmit unit, and a central six-way control is used to switch the pre-transmit/receive units of the different arrays on a time division basis. As used in its Chilean Boeing 707-based application, the lateral fairings measured approximately 12 × 2 m and were mounted on floating beds to prevent airframe flexing degrading the radar accuracy. Each array scans a given azimuth sector, providing a total coverage of 360°. Scanning is carried out electronically in both azimuth and elevation. Radar modes include high PRF search and full track, track-while-scan, a slow scan detection mode for hovering and low-speed helicopters (using rotor blade returns) and a low PRF ship detection mode. [1]

Instead of using a rotodome, a moving radar found on some AEW&C aircraft, the Phalcon uses the Active Electronically Scanned Array (AESA), an active phased array radar. This radar consists of an array of transmit/receive (T/R) modules that allow a beam to be electronically steered, making a physically rotating rotodome unnecessary. AESA radars operate on a pseudorandom set of frequencies and also have very short scanning rates, which makes them difficult to detect and jam. Up to 100 targets can be tracked simultaneously to a range of 200 nmi (370 km), while at the same time, over a dozen air-to-air interception or air-to-ground attack can be guided. The radar can be mounted on an aircraft's fuselage or on the top inside a small dome. Either position gives the radar 360-degree coverage. The phased array radar allows positions of aircraft on operator screens to be updated every 2–4 seconds, rather than every 20–40 seconds as is the case on the rotodome AWACS. [2]

Platforms

The system can be fitted to a number of aircraft, including the Boeing 707, Boeing 767 and Boeing 747 series aircraft. Under a contract signed with Chile in 1989, the first Phalcon system to be installed was fitted to a former LanChile Boeing 707, and was first flown in 1993. In May 1994 the aircraft was delivered to the Chilean Air Force, where it is known as the Condor.

A development system mounted on a Boeing 707 4X-JYS Micha Sender.jpg
A development system mounted on a Boeing 707

Operational history

The Israeli Air Force installed the Phalcon system on Boeing 707 aircraft, which replaced its E-2Cs which were retired in mid-1990s.

Operators

Current operators

Flag of Israel.svg  Israel

Former operators

Flag of Chile.svg  Chile

Related Research Articles

<span class="mw-page-title-main">Boeing E-3 Sentry</span> Airborne early warning and control aircraft based on Boeing 707 airframe

The Boeing E-3 Sentry is an American airborne early warning and control (AEW&C) aircraft developed by Boeing. E-3s are commonly known as AWACS. Derived from the Boeing 707 airliner, it provides all-weather surveillance, command, control, and communications, and is used by the United States Air Force, NATO, French Air and Space Force, Royal Saudi Air Force and Chilean Air Force. The E-3 has a distinctive rotating radar dome (rotodome) above the fuselage. Production ended in 1992 after 68 aircraft had been built.

<span class="mw-page-title-main">Airborne early warning and control</span> Airborne system of surveillance radar plus command and control functions

An airborne early warning and control (AEW&C) system is an airborne radar early warning system designed to detect aircraft, ships, vehicles, missiles and other incoming projectiles at long ranges, as well as performing command and control of the battlespace in aerial engagements by informing and directing friendly fighter and attack aircraft. AEW&C units are also used to carry out aerial surveillance over ground and maritime targets, and frequently perform battle management command and control (BMC2). When used at altitude, the radar system on AEW&C aircraft allows the operators to detect, track and prioritize targets and identify friendly aircraft from hostile ones in real-time and from much farther away than ground-based radars. Like ground-based radars, AEW&C systems can be detected and targeted by opposing forces, but due to aircraft mobility and extended sensor range, they are much less vulnerable to counter-attacks than ground systems.

<span class="mw-page-title-main">Gulfstream G550</span> Executive transport aircraft family

The Gulfstream G550 is a business jet aircraft produced by General Dynamics' Gulfstream Aerospace unit in Savannah, Georgia, US. The certification designation is GV-SP. A version with reduced fuel capacity was marketed as the G500. Gulfstream ceased production of the G550 in July 2021.

<span class="mw-page-title-main">Boeing E-7 Wedgetail</span> Airborne early warning and control aircraft

The Boeing E-7 Wedgetail is a twin-engine airborne early warning and control aircraft based on the Boeing 737 Next Generation design. It has a fixed, active electronically scanned array radar antenna instead of a rotating one as with the 707-based Boeing E-3 Sentry. The E-7 was designed for the Royal Australian Air Force (RAAF) under "Project Wedgetail" and designated E-7A Wedgetail.

The Northrop Grumman E-10 MC2A was planned as a multi-role military aircraft to replace the Boeing 707-based E-3 Sentry and E-8 Joint STARS, the Boeing 747-based E-4B, and the RC-135 Rivet Joint aircraft in US military service. The E-10 was based on the Boeing 767-400ER commercial airplane.

<span class="mw-page-title-main">Active electronically scanned array</span> Type of phased array radar

An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).

<span class="mw-page-title-main">Erieye</span> Airborne Early Warning and Control System used on a variety of aircraft platforms

The Erieye radar system is an Airborne Early Warning and Control System (AEW&C) developed by Saab Electronic Defence Systems, formerly Ericsson Microwave Systems, of Sweden. It uses active electronically scanned array (AESA) technology. The Erieye is used on a variety of aircraft platforms, such as the Saab 340 and Embraer R-99. It has recently been implemented on the Bombardier Global 6000 aircraft as the GlobalEye.

<span class="mw-page-title-main">Passive electronically scanned array</span> Type of antenna

A passive electronically scanned array (PESA), also known as passive phased array, is an antenna in which the beam of radio waves can be electronically steered to point in different directions, in which all the antenna elements are connected to a single transmitter and/or receiver. The largest use of phased arrays is in radars. Most phased array radars in the world are PESA. The civilian microwave landing system uses PESA transmit-only arrays.

<span class="mw-page-title-main">KJ-2000</span> Chinese AEW&C aircraft

The KJ-2000 is a Chinese second-generation airborne early warning and control (AEW&C) aircraft developed by the Shaanxi Aircraft Corporation, and is the first AEW&C system in service to the People's Liberation Army Air Force. It is built upon a modified Russian Ilyushin Il-76 airframe using domestically designed avionics and a fixed radome featuring three active electronically scanned array (AESA) radars each covering a 120-degree sector, unlike the rotating radome on the comparable E-3 Sentry serving the United States Air Force.

<span class="mw-page-title-main">Boeing E-767</span> Airborne warning and control aircraft by Boeing

The Boeing E-767 is an Airborne Warning and Control System (AWACS) aircraft that was designed in response to the Japan Air Self-Defense Force's requirements. It is essentially the Boeing E-3 Sentry's surveillance radar and air control system installed on a Boeing 767-200.

<span class="mw-page-title-main">111 Squadron, Republic of Singapore Air Force</span> Singapore Air Force squadron

The 111 Squadron "Jaeger" was formed when the Republic of Singapore Air Force acquired four Grumman E-2C Hawkeye Airborne Early Warning aircraft in 1987. Based at Tengah Air Base, its primary function is to perform airborne surveillance and early warning. Other functions include Aircraft Intercept Control, Surface Surveillance, Search and Rescue and Air Traffic Control.

The Airborne Surveillance Platform (ASP) is an Indian defence project initiated by the Defence Research and Development Organisation (DRDO) with the aim to produce an Airborne Early Warning System. Two prototypes were developed and flight tested for three years. The project was cancelled in 1999 after the prototype aircraft crashed, killing eight scientists and the aircrew. After four years of inactivity, the project was revived in 2004 with a new platform and radar.

Electronics and Radar Development Establishment (LRDE) is a laboratory of the Defence Research & Development Organisation (DRDO), India. Located in C.V. Raman Nagar, Bengaluru, Karnataka, its primary function is research and development of radars and related technologies. It was founded by S. P. Chakravarti, the father of Electronics and Telecommunication engineering in India, who also founded DLRL and DRDL.

<span class="mw-page-title-main">DRDO AEW&CS</span> Airborne early warning and control aircraft

The DRDO Airborne Early Warning and Control System (AEW&CS) is a project of India's Defence Research and Development Organisation to develop an airborne early warning and control system for the Indian Air Force. It is also referred to as NETRA Airborne Early Warning and Control System (AEW&CS).

The Elta 2052 or EL/M-2052 is an X-Band airborne Active Electronically Scanned Array (AESA) fire control radar (FCR) designed for fighter aircraft to support air-to-air combat and strike missions. Currently, it is fitted in the SEPECAT Jaguar as part of the Indian Air Force (IAF) DARIN III upgrade program. The radar is also fitted in HAL Tejas, and could also be used on other fighter aircraft such as F-15, MiG-29, Mirage 2000, and FA-50 Block 20.

<span class="mw-page-title-main">Saab 340 AEW&C</span> Airborne early warning and command aircraft

The Saab 340 AEW&C is a Swedish airborne early warning and control (AEW&C) aircraft. A variant of the Saab 340 aircraft is designated S 100B Argus by the Swedish Air Force.

<span class="mw-page-title-main">EL/W-2085</span> Airborne early warning radar system

The EL/W-2085 is an airborne early warning and control (AEW&C) multi-band radar system developed by Israel Aerospace Industries (IAI) and Elta Electronics Industries of Israel. Its primary objective is to provide intelligence to maintain air superiority and conduct surveillance. The system is currently in-service with Israel, Italy, and Singapore.

<span class="mw-page-title-main">EL/W-2090</span> Airborne early warning and control radar system

The IAI EL/W-2090 is an airborne early warning and control (AEW&C) radar system developed by Israel Aerospace Industries (IAI) and Elta Electronics Industries of Israel. Its primary objective is to provide intelligence to maintain air superiority and conduct surveillance. The system is currently in-service with the Indian Air Force.

<span class="mw-page-title-main">EL/M-2248 MF-STAR</span> Israeli naval defense radar system

The EL/M-2248 MF-STAR is a multifunction active electronically scanned array naval radar system developed by IAI Elta for maritime installation on warships. It is capable of tracking both air and surface targets and providing fire control guidance. MF-STAR is an acronym of Multi-Function Surveillance, Track And Guidance Radar.

References

  1. Janes Avionics [ dead link ]
  2. "Electronic Weapons: Singapore Gets New AWACS".
  3. 1 2 International Institute for Strategic Studies (IISS) (14 February 2019). "The Military Balance 2019". The Military Balance. 119.
  4. "Boeing 707 Phalcon". Spy Flight. Archived from the original on 21 April 2013. Retrieved 5 January 2017.
  5. "Chile inducts ex-RAF E-3Ds into active service".