Effective perceived noise in decibels (EPNdB) or Effective Perceived Noise Level (EPNL) is a measure of the relative noisiness of an individual aircraft pass-by event. It is used for aircraft noise certification and applies to an individual aircraft, not the noise exposure from an airport. Separate ratings are stated for takeoff, overflight and landing events, and represent the integrated power sum of noisiness during the event. Instantaneous value of noisiness is computed with the PNL or PNdB metric over the period within which the noise from the aircraft is within 10 dB of the maximum noise (usually at the point of closest approach.) It is defined, with computational instructions, in Annex 16 [1] [2] of the Convention on International Civil Aviation and in Part 36 of the US Federal Aviation Regulations. [3] The scaling is such that the EPNdB rating represents the integrated noisiness over a ten-second period; EPNdB of 100 dB means that the event has the same integrated noisiness as a 100 PNdB sound lasting ten seconds. Direct comparison with A-weighted sound pressure level, which is used for many other environmental sound measurements, is not possible because PNdB is a noisiness metric rather than a sound pressure metric.
The term "cumulative" EPNdB is the combination of the noise margins from the three ratings. It is defined as the sum of the individual margins (difference between certified noise level and noise limit) at takeoff lateral, takeoff flyover and approach. [4]
It is important to make the distinction between loudness and noisiness. The same kinds of analytical methods are used [5] but instead of using equal-loudness contours, equal-noisiness contours are derived and used instead.
The EPNdB metric is only used in the US for aircraft certification purposes. In Australia and Canada, it's the basis for the ANEF and NEF noise exposure forecast used in place of the DNL and Day-evening-night metrics used in the US and Europe respectively.
Detailed information on measurement of aircraft acoustic signature to meet the requirements of Annex 16 is found in ICAO Document 9501 [6] and IEC 61265. [7] Data acquisition in one-third-octave bands is required, followed by processing to yield a logarithmically-scaled value in decibels relative to a sound pressure of 20 micropascals for each one-third-octave band. The individual band sound pressure levels are converted to "noy" values [8] which are then summed in the manner of Stevens' MKVI loudness to yield a total noy value. Noy is a linear unit of noisiness like sone is for loudness, and is then converted into PNL or PNdB (the terms are interchangeable) which is a logarithmic unit like phon which is the logarithmic unit for loudness. EPNdB is the integrated PNdB value over the duration of the pass-by event, normalized to a 10-second event duration using Stevens's power law. The frequency weighting function in the "noy" curves is very close to the old D-weighting curve.
The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 101/20.
In atmospheric sounding and noise pollution, ambient noise level is the background sound pressure level at a given location, normally specified as a reference level to study a new intrusive sound source.
A weighting filter is used to emphasize or suppress some aspects of a phenomenon compared to others, for measurement or other purposes.
Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound. Acoustic noise is any sound in the acoustic domain, either deliberate or unintended. In contrast, noise in electronics may not be audible to the human ear and may require instruments for detection.
A microphone, colloquially called a mic, or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and public events, motion picture production, live and recorded audio engineering, sound recording, two-way radios, megaphones, and radio and television broadcasting. They are also used in computers and other electronic devices, such as mobile phones, for recording sounds, speech recognition, VoIP, and other purposes, such as ultrasonic sensors or knock sensors.
Noise pollution, or sound pollution, is the propagation of noise or sound with potential harmful effects on humans and animals. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems. Poor urban planning may give rise to noise disintegration or pollution, side-by-side industrial and residential buildings can result in noise pollution in the residential areas. Some of the main sources of noise in residential areas include loud music, transportation, lawn care maintenance, construction, electrical generators, wind turbines, explosions and people.
Environmental noise is an accumulation of noise pollution that occurs outside. This noise can be caused by transport, industrial, and recreational activities.
Aircraft noise pollution refers to noise produced by aircraft in flight that has been associated with several negative stress-mediated health effects, from sleep disorders to cardiovascular disorders. Governments have enacted extensive controls that apply to aircraft designers, manufacturers, and operators, resulting in improved procedures and cuts in pollution.
Sound pressure or acoustic pressure is the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).
Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area, also called the sound power density and the sound energy flux density. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity.
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface." The SI unit of sound power is the watt (W). It relates to the power of the sound force on a surface enclosing a sound source, in air.
In audio engineering, electronics, physics, and many other fields, the color of noise or noise spectrum refers to the power spectrum of a noise signal. Different colors of noise have significantly different properties. For example, as audio signals they will sound different to human ears, and as images they will have a visibly different texture. Therefore, each application typically requires noise of a specific color. This sense of 'color' for noise signals is similar to the concept of timbre in music.
A weighting curve is a graph of a set of factors, that are used to 'weight' measured values of a variable according to their importance in relation to some outcome. An important example is frequency weighting in sound level measurement where a specific set of weighting curves known as A-, B-, C-, and D-weighting as defined in IEC 61672 are used. Unweighted measurements of sound pressure do not correspond to perceived loudness because the human ear is less sensitive at low and high frequencies, with the effect more pronounced at lower sound levels. The four curves are applied to the measured sound level, for example by the use of a weighting filter in a sound level meter, to arrive at readings of loudness in phons or in decibels (dB) above the threshold of hearing.
The process of frequency weighting involves emphasizing the contribution of particular aspects of a phenomenon over others to an outcome or result; thereby highlighting those aspects in comparison to others in the analysis. That is, rather than each variable in the data set contributing equally to the final result, some of the data is adjusted to make a greater contribution than others. This is analogous to the practice of adding (extra) weight to one side of a pair of scales in order to favour either the buyer or seller.
In acoustics, noise measurement can be for the purpose of measuring environmental noise or measuring noise in the workplace. Applications include monitoring of construction sites, aircraft noise, road traffic noise, entertainment venues and neighborhood noise. One of the definitions of noise covers all "unwanted sounds". When sound levels reach a high enough intensity, the sound, whether it is wanted or unwanted, may be damaging to hearing. Environmental noise monitoring is the measurement of noise in an outdoor environment caused by transport, industry and recreational activities. The laws and limits governing environmental noise monitoring differ from country to country.
A sound level meter is used for acoustic measurements. It is commonly a hand-held instrument with a microphone. The best type of microphone for sound level meters is the condenser microphone, which combines precision with stability and reliability. The diaphragm of the microphone responds to changes in air pressure caused by sound waves. That is why the instrument is sometimes referred to as a sound pressure level meter (SPL). This movement of the diaphragm, i.e. the sound pressure, is converted into an electrical signal. While describing sound in terms of sound pressure, a logarithmic conversion is usually applied and the sound pressure level is stated instead, in decibels (dB), with 0 dB SPL equal to 20 micropascals.
A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. A-weighting is applied to instrument-measured sound levels in an effort to account for the relative loudness perceived by the human ear, as the ear is less sensitive to low audio frequencies. It is employed by arithmetically adding a table of values, listed by octave or third-octave bands, to the measured sound pressure levels in dB. The resulting octave band measurements are usually added to provide a single A-weighted value describing the sound; the units are written as dB(A). Other weighting sets of values – B, C, D and now Z – are discussed below.
Quota Count is a system used in the UK by London's Heathrow, Gatwick, and Stansted airports to limit the amount of noise generated by aircraft movements at night time (23:30–06:00).
Sound annoyance is "a feeling of displeasure associated with any agent or condition [related to sound] that is believed to affect adversely an individual or a group".
The Lockheed Martin X-59 Quesst, sometimes styled QueSST, is an American experimental supersonic aircraft under development by Skunk Works for NASA's Low-Boom Flight Demonstrator project. Preliminary design started in February 2016, with the X-59 planned to begin flight testing in 2021. After delays, as of January 2024, it is planned to be delivered to NASA for flight testing in 2024. It is expected to cruise at Mach 1.42 at an altitude of 55,000 ft (16,800 m), creating a low 75 effective perceived noise level (EPNdB) thump to evaluate supersonic transport acceptability.