E and M signaling

Last updated

E and M signaling is a type of supervisory line signaling that uses DC signals on separate leads, called the "E" lead and "M" lead, traditionally used in the telecommunications industry between telephone switches. Various mnemonic names have been used to memorize these letters, such as Earth and Magneto or Ear and Mouth, the most common variation.

Contents

8 Wires of E and M signaling (Type IV E&M) E and M signaling 8 Wire.png
8 Wires of E and M signaling (Type IV E&M)

E&M was originally developed for signaling between PABXs in different geographic locations over an analog private circuit. The protocol was later extended for use on digital carrier system with Channel Associated Signaling (CAS).

Signaling units and trunk circuits

The E&M standards were initially developed by Bell Labs and extended by national PTT administrations. The standard defines two sides of the interface, the trunk circuit and the signaling unit. The trunk circuit is normally the side to which the PABX is connected. The signaling unit is the special modem that converts the DC signaling protocol into tones that could be transmitted over a four-wire link back to the PTT exchange.

The signaling unit and trunk circuit communicate their status over the E and M leads, using a combination of battery and earth (also known as ground) levels. The battery signal level used in the standard is nominally −48 VDC. All E&M installations require that the positive terminal of the battery is connected to a reliable shared earth circuit. The maximum distance between the signaling unit and the trunk interface is determined by the resistance of the wire, but is normally less than 100 meters for adequate noise immunity.

Variants

The group of E&M signaling includes several variations.

Type I is the most common standard in North America and Japan, and signals an outgoing call from the PBX to the signaling unit with Battery on the M ("Mouth") lead. Incoming calls from the CO are signaled by an earth (ground) signal on the E ("Ear") lead. The interface is vulnerable to poor earthing at either end, and interference from external electrical noise which act on inferior voice signal quality. [1]

Types II to IV are variants which attempt to overcome the main limitation of Type I, which is the reference to earth at each end of the circuit. Types II-IV use the Signal Battery (SB) and Signal Ground (SG) lead in conjunction with the E&M wires. This improves noise immunity as the Signal Ground does not carry the same heavy currents as normal ground connections and provides a low resistance return path for signaling. However, if the main ground connection fails all earth current may flow via the interface, causing signaling failure, hum and in extreme cases destruction of equipment.

Type V is the most common variant in use outside United States. In contrast to Type I, both ends of the connection indicate a call by grounding the relevant lead. This means that it is easy to interconnect two PABXs "back-to-back" by crossing over the E&M leads and transmit and receive pairs.

SSDC5 is commonly used in the United Kingdom and unlike Type V the on- and off-hook state, are backwards to allow for fail-safe operation. If the line breaks, the interface defaults to busy.

Number of wires

E&M defines eight wires:

4-wire E&M uses a 4-wire (2-pair) transmission path for the voice signal. 2-wire E&M uses a single pair for both transmit and receive voice signal. This is much inferior to 4-wire E&M as the 2-wire interface uses hybrid transformers which reduce signal quality and can introduce echo.

Address signaling

The mechanisms described so far only allow circuit seizure – on-hook and off-hook – to be signaled. In order to allow dialing over the interface, "start" signaling mechanisms are defined. This allows the other end to know when to send the dialed digits, which are transmitted by pulse (loop disconnect) or multi-frequency tones. E&M defines three methods of "start" signaling:

Origin of "E&M"

The choice of letters for the E and M leads was fortuitous, unrelated to any names or meanings. [2] However, various names have been associated with the letters E and M:

See also

Related Research Articles

<span class="mw-page-title-main">Telephone</span> Telecommunications device

A telephone, colloquially referred to as a phone, is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals that are transmitted via cables and other communication channels to another telephone which reproduces the sound to the receiving user. The term is derived from Ancient Greek: τῆλε, romanized: tēle, lit. 'far' and φωνή, together meaning distant voice.

<span class="mw-page-title-main">Pulse dialing</span>

Pulse dialing is a signaling technology in telecommunications in which a direct current local loop circuit is interrupted according to a defined coding system for each signal transmitted, usually a digit. This lends the method the often used name loop disconnect dialing. In the most common variant of pulse dialing, decadic dialing, each of the ten Arabic numerals are encoded in a sequence of up to ten pulses. The most common version decodes the digits 1 through 9, as one to nine pulses, respectively, and the digit 0 as ten pulses. Historically, the most common device to produce such pulse trains is the rotary dial of the telephone, lending the technology another name, rotary dialing.

In telephony, on-hook and off-hook are two states of a communication circuit. On subscriber telephones the states are produced by placing the handset onto or off the hookswitch. Placing the circuit into the off-hook state is also called seizing the line. Off-hook originally referred to the condition that prevailed when telephones had a separate earpiece (receiver), which hung from its switchhook until the user initiated a telephone call by removing it. When off hook the weight of the receiver no longer depresses the spring-loaded switchhook, thereby connecting the instrument to the telephone line.

In telephony, ringdown is a method of signaling an operator in which telephone ringing current is sent over the line to operate a lamp or cause the operation of a self-locking relay known as a drop.

In telecommunication, signaling is the use of signals for controlling communications. This may constitute an information exchange concerning the establishment and control of a telecommunication circuit and the management of the network.

Plain Old Telephone Service (POTS), or Plain Ordinary Telephone System, is a retronym for voice-grade telephone service employing analog signal transmission over copper loops. Originally POTS stood for Post Office Telephone Service as early phone lines in most parts of the world were operated directly by the local Post Office.

<span class="mw-page-title-main">Blue box</span> Device for hacking telephone networks

A blue box is an electronic device that produces tones used to generate the in-band signaling tones formerly used within the North American long-distance telephone network to send line status and called number information over voice circuits. During that period, charges associated with long-distance calling were commonplace and could be significant, depending on the time, duration and destination of the call. A blue box device allowed for circumventing these charges by enabling an illicit user, referred to as a "phreaker" to place long-distance calls, without using the network's user facilities, that would be billed to another number or dismissed entirely by the telecom company's billing system as an incomplete call. A number of similar "color boxes" were also created to control other aspects of the phone network.

<span class="mw-page-title-main">Telephone call</span> Connection between two or more people over a telephone network

A telephone call or telephone conversation, also known as a phone call or voice call, is a connection over a telephone network between the called party and the calling party. Telephone calls started in the late 19th century. As technology has improved, a majority of telephone calls are made over a cellular network through mobile phones or over the internet with Voice over IP. Telephone calls are typically used for real-time conversation between two or more parties, especially when the parties cannot meet in person.

Direct inward dialing (DID), also called direct dial-in (DDI) in Europe and Oceania, is a telecommunication service offered by telephone companies to subscribers who operate private branch exchange (PBX) systems. The feature provides service for multiple telephone numbers over one or more analog or digital physical circuits to the PBX, and transmits the dialed telephone number to the PBX so that a PBX extension is directly accessible for an outside caller, possibly by-passing an auto-attendant.

<span class="mw-page-title-main">Hook flash</span> Telephone signal

On analog telephone lines with special services, a flash or register-recall signal is used to control functions on the public telephone exchange, PBX or VoIP ATA.

Loop start is a telecommunications supervisory protocol between a central office or private branch exchange (PBX) and a subscriber telephone or other terminal for the purpose of starting and terminating a telephone call. It is the simplest of the telephone signaling systems, and uses the presence or absence of loop current to indicate the off-hook and on-hook loop states, respectively. It is used primarily for subscriber line signaling. An extension of the protocol that adds disconnect supervision is often called kewlstart.

In telephony, ground start is a method of signaling from a terminal of a subscriber local loop to a telephone exchange, where one side of a cable pair is temporarily grounded to request dial tone. Most middle 20th-century American payphones used coin-first ground start lines, with the starting ground connection provided by the coin itself, bridging a set of contacts as it passed through the coin chute.

A party line is a local loop telephone circuit that is shared by multiple telephone service subscribers.

<span class="mw-page-title-main">History of the telephone</span>

This history of the telephone chronicles the development of the electrical telephone, and includes a brief overview of its predecessors. The first telephone patent was granted to Alexander Graham Bell in 1869.

In telecommunication, supervision is the monitoring of a telecommunication circuit for telephony to convey to an operator, user, or a switching system, information about the operational state of the circuit. The typical operational states of trunks and lines are the idle and busy states, seizure, and disconnect. The states are indicated by various electrical signals and electrical conditions depending on the type of circuit, the type of terminating equipment, and the type of intended service.

The Number Five Crossbar Switching System is a telephone switch for telephone exchanges designed by Bell Labs and manufactured by Western Electric starting in 1947. It was used in the Bell System principally as a Class 5 telephone switch in the public switched telephone network (PSTN) until the early 1990s, when it was replaced with electronic switching systems. Variants were used as combined Class 4 and Class 5 systems in rural areas, and as a TWX switch.

<span class="mw-page-title-main">Tip and ring</span> Conductors of a telephone line

Tip and ring are the two conductors or sides of a telephone line. Their names are derived from the telephone plugs used for connecting telephone calls in manual switchboards. One side of the line is connected to the metal tip of the plug, and the second is connected to a metal ring behind the tip, separated and insulated from the tip by a non-conducting material. When inserted into a jack, the plug's tip conductor connects first, followed by the ring conductor. In many European countries, tip and ring are referred to as the A and B wires.

In modern day usage, "foreign exchange office" (FXO) and "foreign exchange station" (FXS) refer to the different ends of a telephone line in the context of voice over IP (VoIP) systems and its interconnection with analog telephony equipment. The FXO side is used for the telephone, and the FXS side is the analog telephone adapter.

<span class="mw-page-title-main">Telephone exchange</span> Interconnects telephones for calls

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.

<span class="mw-page-title-main">Panel switch</span>

The Panel Machine Switching System is a type of automatic telephone exchange for urban service that was used in the Bell System in the United States for seven decades. The first semi-mechanical types of this design were installed in 1915 in Newark, New Jersey, and the last were retired in the same city in 1983.

References

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2018-03-29. Retrieved 2017-11-23.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Bell Telephone Laboratories, G.E. Schindler (ed.), A History of Engineering and Science in the Bell System—Switching Technology (1925-1975), 1982, p.52