Eberlein compactum

Last updated

In mathematics an Eberlein compactum, studied by William Frederick Eberlein, is a compact topological space homeomorphic to a subset of a Banach space with the weak topology. Every compact metric space, more generally every one-point compactification of a locally compact metric space, is Eberlein compact. The converse is not true.

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

Compact space Topological notions of all points being "close"

In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.

In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space where for any two distinct points there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

Normed vector space Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real world. A norm is a real-valued function defined on the vector space that is commonly denoted and has the following properties:

  1. It is nonnegative, that is for every vector x, one has
  2. It is positive on nonzero vectors, that is,
  3. For every vector x, and every scalar one has
  4. The triangle inequality holds; that is, for every vectors x and y, one has

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) such that the canonical evaluation map from into its bidual is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space is reflexive if and only if the canonical evaluation map from into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is not reflexive but is nevertheless isometrically isomorphic to its bidual.

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

Approximation property

In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true.

In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed "size"

In mathematics, Mazur's lemma is a result in the theory of Banach spaces. It shows that any weakly convergent sequence in a Banach space has a sequence of convex combinations of its members that converges strongly to the same limit, and is used in the proof of Tonelli's theorem.

In the mathematical field of functional analysis, the Eberlein–Šmulian theorem is a result that relates three different kinds of weak compactness in a Banach space.

In mathematics, particularly functional analysis, James' theorem, named for Robert C. James, states that a Banach space is reflexive if and only if every continuous linear functional on attains its supremum on the closed unit ball in

In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space in which every sequence in its continuous dual space that converges in the weak-* topology will also converge when is endowed with which is the weak topology induced on by its bidual. Said differently, a Grothendieck space is a Banach space for which a sequence in its dual space converges weak-* if and only if it convergence weakly.

In the mathematical study of functional analysis, the Banach–Mazur distance is a way to define a distance on the set of -dimensional normed spaces. With this distance, the set of isometry classes of -dimensional normed spaces becomes a compact metric space, called the Banach–Mazur compactum.

In mathematics — specifically, in functional analysis — an Asplund space or strong differentiability space is a type of well-behaved Banach space. Asplund spaces were introduced in 1968 by the mathematician Edgar Asplund, who was interested in the Fréchet differentiability properties of Lipschitz functions on Banach spaces.

In mathematics, the Bishop–Phelps theorem is a theorem about the topological properties of Banach spaces named after Errett Bishop and Robert Phelps, who published its proof in 1961.

In mathematics, Delta-convergence, or Δ-convergence, is a mode of convergence in metric spaces, weaker than the usual metric convergence, and similar to the weak convergence in Banach spaces. In Hilbert space, Delta-convergence and weak convergence coincide. For a general class of spaces, similarly to weak convergence, every bounded sequence has a Delta-convergent subsequence. Delta convergence was first introduced by Teck-Cheong Lim, and, soon after, under the name of almost convergence, by Tadeusz Kuczumow.

In mathematics, specifically in functional analysis and Hilbert space theory, vector-valued Hahn–Banach theorems are generalizations of the Hahn–Banach theorems from linear functionals to linear operators valued in topological vector spaces (TVSs).

References