Ebullated bed reactor

Last updated

Ebullated bed reactors are a type of fluidized bed reactor that utilizes ebullition, or bubbling, to achieve appropriate distribution of reactants and catalysts. The ebullated-bed technology utilizes a three-phase reactor (liquid, vapor, and catalyst), and is most applicable for exothermic reactions and for feedstocks which are difficult to process in fixed-bed or plug flow reactors due to high levels of contaminants. Ebullated bed reactors offer high-quality, continuous mixing of liquid and catalyst particles. The advantages of a good back-mixed bed include excellent temperature control and, by reducing bed plugging and channeling, low and constant pressure drops. Therefore, ebullated bed reactors have the characteristics of stirred reactor type operation with a fluidized catalyst. [1] [2]

Contents

Operation

The catalyst used for the ebullated bed is typically a 0.8-mm diameter extrudate, and is held in a fluidized state through the upward lift of liquid reactants and gas. The liquid and gas enter in the reactor plenum, and are distributed across the bed through a distributor and grid plate. The height of the ebullated catalyst bed can be controlled by the rate of liquid recycle flow. This liquid rate is adjusted by varying the speed of the ebullating pump, a canned centrifugal pump which controls the flow of ebullating liquid obtained from the internal vapor/liquid separator inside the reactor. Fresh catalyst can be added, and spent catalyst withdrawn, to control the level of catalyst activity within the reactor. The capability of regular addition of a small quantity of catalyst is instrumental to ebullated-bed reactors' consistent product quality over long time periods. To adjust operation and/or different feedstocks, the type of catalyst used can also be changed without shutting down the reactor. [1] [2] [3]

Applications

Ebullated bed reactors are used in the hydroconversion of heavy petroleum and petroleum fractions, particularly vacuum residuum. [1] [3] [4] [5]

Ebullated beds have been developed for slurry hydrocracking of extra-heavy oil, tar sands, oil sands and liquefaction of coal through the use of ultrafine catalystAbulnaga, Baha (2021). Slurry Systems Handbook. McGraw-Hill. pp. 825–829. ISBN   9781260452792 . Retrieved 5 February 2022.</ref>

Related Research Articles

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Cracking (chemistry)</span> Process whereby complex organic molecules are broken down into simpler molecules

In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking a long chain of hydrocarbons into short ones. This process requires high temperatures.

<span class="mw-page-title-main">Fluidization</span> Conversion of a granular material from a solid-like to liquid-like state

Fluidization is a process similar to liquefaction whereby a granular material is converted from a static solid-like state to a dynamic fluid-like state. This process occurs when a fluid is passed up through the granular material.

<span class="mw-page-title-main">Chemical reactor</span> Enclosed volume where interconversion of compounds takes place

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Catalytic reforming</span> Chemical process used in oil refining

Catalytic reforming is a chemical process used to convert petroleum refinery naphthas distilled from crude oil into high-octane liquid products called reformates, which are premium blending stocks for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes, which are then partially dehydrogenated to produce high-octane aromatic hydrocarbons. The dehydrogenation also produces significant amounts of byproduct hydrogen gas, which is fed into other refinery processes such as hydrocracking. A side reaction is hydrogenolysis, which produces light hydrocarbons of lower value, such as methane, ethane, propane and butanes.

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

<span class="mw-page-title-main">Packed bed</span> A hollow object filled with material that does not fully obstruct fluid flow

In chemical processing, a packed bed is a hollow tube, pipe, or other vessel that is filled with a packing material. The packing can be randomly filled with small objects like Raschig rings or else it can be a specifically designed structured packing. Packed beds may also contain catalyst particles or adsorbents such as zeolite pellets, granular activated carbon, etc.

<span class="mw-page-title-main">Fluid catalytic cracking</span> Petroleum conversion process

Fluid Catalytic Cracking (FCC) is the conversion process used in petroleum refineries to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum into gasoline, alkene gases, and other petroleum products. The cracking of petroleum hydrocarbons was originally done by thermal cracking, now virtually replaced by catalytic cracking, which yields greater volumes of high octane rating gasoline; and produces by-product gases, with more carbon-carbon double bonds, that are of greater economic value than the gases produced by thermal cracking.

<span class="mw-page-title-main">Hydrodesulfurization</span> Chemical process used to remove sulfur in natural gas and oil refining

Hydrodesulfurization (HDS), also called hydrotreatment or hydrotreating, is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products, such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur, and creating products such as ultra-low-sulfur diesel, is to reduce the sulfur dioxide emissions that result from using those fuels in automotive vehicles, aircraft, railroad locomotives, ships, gas or oil burning power plants, residential and industrial furnaces, and other forms of fuel combustion.

In flow chemistry, also called reactor engineering, a chemical reaction is run in a continuously flowing stream rather than in batch production. In other words, pumps move fluid into a reactor, and where tubes join one another, the fluids contact one another. If these fluids are reactive, a reaction takes place. Flow chemistry is a well-established technique for use at a large scale when manufacturing large quantities of a given material. However, the term has only been coined recently for its application on a laboratory scale by chemists and describes small pilot plants, and lab-scale continuous plants. Often, microreactors are used.

Merox is an acronym for mercaptan oxidation. It is a proprietary catalytic chemical process developed by UOP used in oil refineries and natural gas processing plants to remove mercaptans from LPG, propane, butanes, light naphthas, kerosene and jet fuel by converting them to liquid hydrocarbon disulfides.

<span class="mw-page-title-main">Fluidized bed reactor</span> Reactor carrying multiphase chemical reactions with solid particles suspended in an ascending fluid

A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid is passed through a solid granular material at high enough speeds to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to an FBR. As a result, FBRs are used for many industrial applications.

<span class="mw-page-title-main">Delayed coker</span>

A delayed coker is a type of coker whose process consists of heating a residual oil feed to its thermal cracking temperature in a furnace with multiple parallel passes. This cracks the heavy, long chain hydrocarbon molecules of the residual oil into coker gas oil and petroleum coke.

Continuous reactors carry material as a flowing stream. Reactants are continuously fed into the reactor and emerge as continuous stream of product. Continuous reactors are used for a wide variety of chemical and biological processes within the food, chemical and pharmaceutical industries. A survey of the continuous reactor market will throw up a daunting variety of shapes and types of machine. Beneath this variation however lies a relatively small number of key design features which determine the capabilities of the reactor. When classifying continuous reactors, it can be more helpful to look at these design features rather than the whole system.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

<span class="mw-page-title-main">Slug flow</span>

In fluid mechanics, slug flow in liquid–gas two-phase flow is a type of flow pattern. Lighter, faster moving continuous fluid which contains gas bubbles - pushes along a disperse gas bubble. Pressure oscillations within piping can be caused by slug flow. The word slug usually refers to the heavier, slower moving fluid, but can also be used to refer to the bubbles of the lighter fluid.

Heterogenous catalytic reactors put emphasis on catalyst effectiveness factors and the heat and mass transfer implications. Heterogenous catalytic reactors are among the most commonly utilized chemical reactors in the chemical engineering industry.

References

  1. 1 2 3 Kressman; et al. "Improvements of Ebullated-Bed Technology for Upgrading Heavy Oils" (PDF). Oil & Gas Science Technology. Retrieved 13 December 2015.
  2. 1 2 Meurant, Gerard (1989). Advances in Chemical Engineering Volume 14. Academic Press. pp. 148–150. ISBN   9780080565613 . Retrieved 13 December 2015.
  3. 1 2 CB&I. "LC-Fining" (PDF). Archived from the original (PDF) on 4 March 2016. Retrieved 13 December 2015.
  4. Criterion Catalysis and Technologies. "Residue Upgrading Using Ebullated-Bed Hydrocracking" (PDF). Retrieved 13 December 2015.
  5. Axens IFP Group Technologies. "H-Oil RC" . Retrieved 13 December 2015.