Edge chasing

Last updated

In computer science, edge-chasing is an algorithm for deadlock detection in distributed systems. Developed by Chandy Misra Hass. Whenever a process A is blocked for some resource, a probe message is sent to all processes A may depend on. The probe message contains the process id of A along with the path that the message has followed through the distributed system. If a blocked process receives the probe it will update the path information and forward the probe to all the processes it depends on. Non-blocked processes may discard the probe.

If eventually the probe returns to process A, there is a circular waiting loop of blocked processes, and a deadlock is detected. Efficiently detecting such cycles in the “wait-for graph” of blocked processes is an important implementation problem.

Related Research Articles

A real-time operating system (RTOS) is an operating system (OS) for real-time applications that processes data and events that have critically defined time constraints. An RTOS is distinct from a time sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in a multitasking or multiprogramming environment. Processing time requirements need to be fully understood and bound rather than just kept as a minimum. All processing must occur within the defined constraints. Real-time operating systems are event-driven and preemptive, meaning the OS is capable of monitoring the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.

Mutual exclusion

In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing critical section, which refers to an interval of time during which a thread of execution accesses a shared resource, such as [Shared data objects, shared resources, shared memory].

Process (computing) Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. It contains the program code and its activity. Depending on the operating system (OS), a process may be made up of multiple threads of execution that execute instructions concurrently.

Deadlock State in which members are blocking each other

In concurrent computing, a deadlock is a state in which each member of a group waits for another member, including itself, to take action, such as sending a message or more commonly releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, where software and hardware locks are used to arbitrate shared resources and implement process synchronization.

Transaction processing is information processing in computer science that is divided into individual, indivisible operations called transactions. Each transaction must succeed or fail as a complete unit; it can never be only partially complete.

In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible.

In computer science, a lock or mutex is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications.

In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the resulting set of database transaction schedules (histories). The protocol uses locks, applied by a transaction to data, which may block other transactions from accessing the same data during the transaction's life.

Dining philosophers problem Problem used to illustrate synchronization issues and techniques for resolving them

In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.

In computer science, message passing is a technique for invoking behavior on a computer. The invoking program sends a message to a process and relies on that process and its supporting infrastructure to then select and run some appropriate code. Message passing differs from conventional programming where a process, subroutine, or function is directly invoked by name. Message passing is key to some models of concurrency and object-oriented programming.

Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.

The Dijkstra–Scholten algorithm is an algorithm for detecting termination in a distributed system. The algorithm was proposed by Dijkstra and Scholten in 1980.

In concurrency control of databases, transaction processing, and various transactional applications, both centralized and distributed, a transaction schedule is serializable if its outcome is equal to the outcome of its transactions executed serially, i.e. without overlapping in time. Transactions are normally executed concurrently, since this is the most efficient way. Serializability is the major correctness criterion for concurrent transactions' executions. It is considered the highest level of isolation between transactions, and plays an essential role in concurrency control. As such it is supported in all general purpose database systems. Strong strict two-phase locking (SS2PL) is a popular serializability mechanism utilized in most of the database systems since their early days in the 1970s.

Commitment ordering (CO) is a class of interoperable serializability techniques in concurrency control of databases, transaction processing, and related applications. It allows optimistic (non-blocking) implementations. With the proliferation of multi-core processors, CO has also been increasingly utilized in concurrent programming, transactional memory, and software transactional memory (STM) to achieve serializability optimistically. CO is also the name of the resulting transaction schedule (history) property, defined in 1988 with the name dynamic atomicity. In a CO compliant schedule, the chronological order of commitment events of transactions is compatible with the precedence order of the respective transactions. CO is a broad special case of conflict serializability and effective means to achieve global serializability across any collection of database systems that possibly use different concurrency control mechanisms.

In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization.

Wait-for graph

A wait-for graph in computer science is a directed graph used for deadlock detection in operating systems and relational database systems.

High performance computing applications run on massively parallel supercomputers consist of concurrent programs designed using multi-threaded, multi-process models. The applications may consist of various constructs with varying degree of parallelism. Although high performance concurrent programs use similar design patterns, models and principles as that of sequential programs, unlike sequential programs, they typically demonstrate non-deterministic behavior. The probability of bugs increases with the number of interactions between the various parallel constructs. Race conditions, data races, deadlocks, missed signals and live lock are common error types.

In computer science, deadlock prevention algorithms are used in concurrent programming when multiple processes must acquire more than one shared resource. If two or more concurrent processes obtain multiple resources indiscriminately, a situation can occur where each process has a resource needed by another process. As a result, none of the processes can obtain all the resources it needs, so all processes are blocked from further execution. This situation is called a deadlock. A deadlock prevention algorithm organizes resource usage by each process to ensure that at least one process is always able to get all the resources it needs. One such example of deadlock algorithm is Banker's algorithm.

The Chandy–Misra–Haas algorithm resource model checks for deadlock in a distributed system. It was developed by K. Mani Chandy, Jayadev Misra and Laura M Haas.

Reachability analysis is a solution to the reachability problem in the particular context of distributed systems. It is used to determine which global states can be reached by a distributed system which consists of a certain number of local entities that communicated by the exchange of messages.