Efficient envy-free division

Last updated

Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. [1] Later, the existence of such allocations has been proved under various conditions.

Contents

Existence of PEEF allocations

We assume that each agent has a preference-relation on the set of all bundles of commodities. The preferences are complete, transitive, and closed. Equivalently, each preference relation can be represented by a continuous utility function. [2] :79

Weakly-convex preferences

Theorem 1 (Varian): [2] :68If the preferences of all agents are convex and strongly monotone, then PEEF allocations exist.

Proof: The proof relies on the existence of a competitive equilibrium with equal incomes. Assume that all resources in an economy are divided equally between the agents. I.e, if the total endowment of the economy is , then each agent receives an initial endowment .

Since the preferences are convex, the Arrow–Debreu model implies that a competitive equilibrium exists. I.e, there is a price vector and a partition such that:

Such an allocation is always EF. Proof: by the (EI) condition, for every . Hence, by the (CE) condition, .

Since the preferences are monotonic , any such allocation is also PE, since monotonicity implies local nonsatiation. See fundamental theorems of welfare economics.

Examples

All examples involve an economy with two goods, x and y, and two agents, Alice and Bob. In all examples, the utilities are weakly-convex and continuous.

A. Many PEEF allocations: The total endowment is (4,4). Alice and Bob have linear utilities, representing substitute goods:

,
.

Note that the utilities are weakly-convex and strongly-monotone. Many PEEF allocations exist. If Alice receives at least 3 units of x, then her utility is 6 and she does not envy Bob. Similarly, if Bob receives at least 3 units of y, he does not envy Alice. So the allocation [(3,0);(1,4)] is PEEF with utilities (6,9). Similarly, the allocations [(4,0);(0,4)] and [(4,0.5);(0,3.5)] are PEEF. On the other hand, the allocation [(0,0);(4,4)] is PE but not EF (Alice envies Bob); the allocation [(2,2);(2,2)] is EF but not PE (the utilities are (6,6) but they can be improved e.g. to (8,8)).

B. Essentially-single PEEF allocation: The total endowment is (4,2). Alice and Bob have Leontief utilities, representing complementary goods:

.

Note that the utilities are weakly-convex and only weakly-monotone. Still A PEEF allocation exists. The equal allocation [(2,1);(2,1)] is PEEF with utility vector (1,1). EF is obvious (every equal allocation is EF). Regarding PE, note that both agents now want only y, so the only way to increase the utility of an agent is to take some y from the other agent, but this decreases the utility of the other agent. While there are other PEEF allocations, e.g. [(1.5,1);(2.5,1)], all have the same utility vector of (1,1), since it is not possible to give both agents more than 1. [3]

Topological conditions on the space of efficient allocations

PEEF allocations exist even when agents' preferences are not convex. There are several sufficient conditions that are related to the shape of the set of allocations corresponding to a specific efficient utility profile. Given a utility-vector u, define A(u) = the set of all allocations for which the utility-profile is u. The following successively more general theorems were proved by different authors:

Theorem 2 (Varian): [2] :69 Suppose all agents' preferences are strongly monotone. If, for every Weakly Pareto Efficient utility-profile u, the set A(u) is a singleton (i.e, there are no two WPE allocations such that all agents are indifferent between them), then PEEF allocations exist.

The proof uses the Knaster–Kuratowski–Mazurkiewicz lemma.

Note: The conditions in Theorem 1 and in Theorem 2 are independent - none of them implies the other. However, strict-convexity of preferences implies both of them. It is obvious that strict-convexity implies weak-convexity (theorem 1). To see that it implies the condition of theorem 2, suppose there are two different allocations x,y with the same utility profile u. Define z = x/2+y/2. By strict convexity, all agents strictly prefer z to x and to y. Hence, x and y cannot be weakly-PE.

Theorem 3 (Svensson): [4] If all agents' preferences are strongly monotone, and for every PE utility-profile u, the set A(u) is convex, then PEEF allocations exist.

The proof uses the Kakutani fixed-point theorem.

Note: if all agents' preferences are convex (as in theorem 1), then A(u) is obviously convex too. Moreover, if A(u) is singleton (as in theorem 2) then it is obviously convex too. Hence, Svensson's theorem is more general than both Varian's theorems.

Theorem 4 (Diamantaras): [5] If all agents' preferences are strongly monotone, and for every PE utility-profile u, the set A(u) is a contractible space (can be continuously shrunk to a point within that space), then PEEF allocations exist.

The proof uses a fixed-point theorem by Eilenberg and Montgomery. [6]

Note: Every convex set is contractible, so Diamantaras' theorem is more general than the previous three.

Sigma-optimality

Svensson proved another sufficient condition for the existence of PEEF allocations. Again all preferences are represented by continuous utility functions. Moreover, all utility functions are continuously differentiable in the interior of the consumption space.

The main concept is sigma-optimality. Suppose we create, for each agent, k copies with identical preferences. Let X be an allocation in the original economy. Let Xk be an allocation in the k-replicated economy where all copies of the same agent receive the same bundle as the original agent in X. The allocation X is called sigma-optimal if for every k, the allocation Xk is Pareto-optimal.

Lemma: [7] :528 An allocation is sigma-optimal, if-and-only-if it is a competitive equilibrium.

Theorem 5 (Svensson): [7] :531if all Pareto-optimal allocations are sigma-optimal, then PEEF allocations exist.

Increasing marginal returns

PEEF allocations might fail to exist even when all preferences are convex, if there is production and the technology has increasing-marginal-returns.

Proposition 6 (Vohra): [8] There exist economies in which all preferences are continuous strongly-monotone and convex, the only source of non-convexity in the technology is due to fixed costs, and there exists no PEEF allocation.

Thus, the presence of increasing returns introduces a fundamental conflict between efficiency and fairness.

However, envy-freeness can be weakened in the following way. An allocation X is defined as essentially envy-free (EEF) if, for every agent i, there is a feasible allocation Yi with the same utility profile (all agents are indifferent between X and Yi) in which agent i does not envy anyone. Obviously, every EF allocation is EEF, since we can take Yi to be X for all i.

Theorem 7 (Vohra): [8] Suppose all agents' preferences are strongly monotone, and represented by continuous utility functions. Then, Pareto-efficient EEF allocations exist.

Non-existence of PEEF allocations

Non-convex preferences

PEEF allocations might fail to exist even without production, when the preferences are non-convex.

As an example, suppose the total endowment is (4,2), and Alice and Bob have identical concave utilities:

.

The equal allocation [(2,1);(2,1)] is EF with utility vector (2,2). Moreover, every EF allocation must give both agents equal utility (since they have the same utility function) and this utility can be at most 2. However, no such allocation is PE, since it is Pareto-dominated by the allocation [(4,0);(0,2)] whose utility vector is (4,2).

Non-existence remains even if we weaken envy-freeness to no domination -- no agent gets more of each good than another agent.

Proposition8 (Maniquet): [9] There exist 2-good 3-agent division economies with strictly monotonic, continuous and even differentiable preferences, where there is domination at every Pareto efficient allocation.

Finding a PEEF allocation

For two agents, the adjusted winner procedure is a simple procedure that finds a PEEF allocation with two additional properties: the allocation is also equitable, and at most a single good is shared between the two agents.

For three or more agents with linear utilities, any Nash-optimal allocation is PEEF. A Nash-optimal allocation is an allocation that maximizes the product of the utilities of the agents, or equivalently, the sum of logarithms of utilities. Finding such an allocation is a convex optimization problem:

.

and thus it can be found efficiently. The fact that any Nash-optimal allocation is PEEF is true even in the more general setting of fair cake-cutting. [10]

Proof: Consider an infinitesimal piece of cake, Z. For each agent i, the infinitesimal contribution of Z to is

.

Therefore, the Nash-optimal rule gives each such piece Z to an agent j for which this expression is largest:


Summing over all infinitesimal subsets of Xj, we get:

This implies the definition of envy-free allocation:

See also

Related Research Articles

<span class="mw-page-title-main">Pareto efficiency</span> Weakly optimal allocation of resources

In welfare economics, a Pareto improvement formalizes the idea of an outcome being "better in every possible way". A change is called a Pareto improvement if it leaves everyone in a society better-off. A situation is called Pareto efficient or Pareto optimal if all possible Pareto improvements have already been made; in other words, there are no longer any ways left to make one person better-off, without making some other person worse-off.

<span class="mw-page-title-main">Arrow–Debreu model</span> Economic Model

In mathematical economics, the Arrow–Debreu model is a theoretical general equilibrium model. It posits that under certain economic assumptions there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy.

In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility.

There are two fundamental theorems of welfare economics. The first states that in economic equilibrium, a set of complete markets, with complete information, and in perfect competition, will be Pareto optimal. The requirements for perfect competition are these:

  1. There are no externalities and each actor has perfect information.
  2. Firms and consumers take prices as given.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">Fair cake-cutting</span> Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair – each person should receive a piece believed to be a fair share.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

Group envy-freeness is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.

Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

In economics and consumer theory, a linear utility function is a function of the form:

Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.

Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.

Approximate Competitive Equilibrium from Equal Incomes (A-CEEI) is a procedure for fair item assignment. It was developed by Eric Budish.

Egalitarian equivalence (EE) is a criterion of fair division. In an egalitarian-equivalent division, there exists a certain "reference bundle" such that each agent feels that his/her share is equivalent to .

In theoretical economics, an abstract economy is a model that generalizes both the standard model of an exchange economy in microeconomics, and the standard model of a game in game theory. An equilibrium in an abstract economy generalizes both a Walrasian equilibrium in microeconomics, and a Nash equilibrium in game-theory.

When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.

In economics and computer science, Fractional Pareto efficiency or Fractional Pareto optimality (fPO) is a variant of Pareto efficiency used in the setting of fair allocation of discrete objects. An allocation of objects is called discrete if each item is wholly allocated to a single agent; it is called fractional if some objects are split among two or more agents. A discrete allocation is called Pareto-efficient (PO) if it is not Pareto-dominated by any discrete allocation; it is called fractionally Pareto-efficient (fPO) if it is not Pareto-dominated by any discrete or fractional allocation. So fPO is a stronger requirement than PO: every fPO allocation is PO, but not every PO allocation is fPO.

References

  1. David Schmeidler and Menahem Yaari (1971). "Fair allocations". Mimeo.
  2. 1 2 3 Hal Varian (1974). "Equity, envy, and efficiency". Journal of Economic Theory. 9: 63–91. doi:10.1016/0022-0531(74)90075-1. hdl: 1721.1/63490 .
  3. Note that a similar economy appears in the 1974 paper:70 as an example that a PEEF allocation does not exist. This is probably a typo - the "min" should be "max", as in example C below. See this economics stack-exchange thread.
  4. Svensson, Lars-Gunnar (1983-09-01). "On the existence of fair allocations". Zeitschrift für Nationalökonomie. 43 (3): 301–308. doi:10.1007/BF01283577. ISSN   0044-3158. S2CID   154142919.
  5. Diamantaras, Dimitrios (1992-06-01). "On equity with public goods". Social Choice and Welfare. 9 (2): 141–157. doi:10.1007/BF00187239. ISSN   0176-1714. S2CID   154016094.
  6. Eilenberg, Samuel; Montgomery, Deane (1946). "Fixed Point Theorems for Multi-Valued Transformations". American Journal of Mathematics. 68 (2): 214–222. doi:10.2307/2371832. JSTOR   2371832.
  7. 1 2 Svensson, Lars-Gunnar (1994). "σ-Optimality and Fairness". International Economic Review. 35 (2): 527–531. doi:10.2307/2527068. JSTOR   2527068.
  8. 1 2 Vohra, Rajiv (1992-07-01). "Equity and efficiency in non-convex economies". Social Choice and Welfare. 9 (3): 185–202. doi:10.1007/BF00192877. ISSN   0176-1714. S2CID   29307358.
  9. Maniquet, François (1999-12-01). "A strong incompatibility between efficiency and equity in non-convex economies". Journal of Mathematical Economics. 32 (4): 467–474. doi:10.1016/S0304-4068(98)00067-6. ISSN   0304-4068.
  10. Segal-Halevi, Erel; Sziklai, Balázs R. (2018-05-26). "Monotonicity and competitive equilibrium in cake-cutting". Economic Theory. 68 (2): 363–401. arXiv: 1510.05229 . doi:10.1007/s00199-018-1128-6. ISSN   1432-0479. S2CID   253711877.
  11. Varian, Hal R. (1976). "Two problems in the theory of fairness" (PDF). Journal of Public Economics. 5 (3–4): 249–260. doi:10.1016/0047-2727(76)90018-9. hdl: 1721.1/64180 .
  12. Piketty, Thomas (1994-11-01). "Existence of fair allocations in economies with production". Journal of Public Economics. 55 (3): 391–405. doi:10.1016/0047-2727(93)01406-Z. ISSN   0047-2727.
  13. Cole, Richard; Tao, Yixin (2021-04-01). "On the existence of Pareto Efficient and envy-free allocations". Journal of Economic Theory. 193: 105207. arXiv: 1906.07257 . doi:10.1016/j.jet.2021.105207. ISSN   0022-0531. S2CID   189999837.
  14. Diamantaras, Dimitrios; Thomson, William (1990-07-01). "A refinement and extension of the no-envy concept". Economics Letters. 33 (3): 217–222. doi:10.1016/0165-1765(90)90004-K. ISSN   0165-1765.