In social choice and operations research, the egalitarian rule (also called the max-min rule or the Rawlsian rule) is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the minimum utility of all individuals in society. It is a formal mathematical representation of the egalitarian philosophy. It also corresponds to John Rawls' principle of maximizing the welfare of the worst-off individual. [1]
Let be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from . For example, in a single-winner election, may represent the set of candidates; in a resource allocation setting, may represent all possible allocations.
Let be a finite set, representing a collection of individuals. For each , let be a utility function , describing the amount of happiness an individual i derives from each possible state.
A social choice rule is a mechanism which uses the data to select some element(s) from which are `best' for society. The question of what 'best' means is the basic question of social choice theory. The egalitarian rule selects an element which maximizes the minimum utility, that is, it solves the following optimization problem:
Often, there are many different states with the same minimum utility. For example, a state with utility profile (0,100,100) has the same minimum value as a state with utility profile (0,0,0). In this case, the egalitarian rule often uses the leximin order, that is: subject to maximizing the smallest utility, it aims to maximize the next-smallest utility; subject to that, maximize the next-smallest utility, and so on.
For example, suppose there are two individuals - Alice and George, and three possible states: state x gives a utility of 2 to Alice and 4 to George; state y gives a utility of 9 to Alice and 1 to George; and state z gives a utility of 1 to Alice and 8 to George. Then state x is leximin-optimal, since its utility profile is (2,4) which is leximin-larger than that of y (9,1) and z (1,8).
The egalitarian rule strengthened with the leximin order is often called the leximin rule, to distinguish it from the simpler max-min rule.
The leximin rule for social choice was introduced by Amartya Sen in 1970, [1] and discussed in depth in many later books. [2] [3] [4] [5] : sub.2.5 [6]
The leximin rule is Pareto-efficient if the outcomes of every decision are known with certainty. However, by Harsanyi's utilitarian theorem, any leximin function is Pareto-inefficient for a society that must make tradeoffs under uncertainty: There exist situations in which every person in a society would be better-off (ex ante) if they were to take a particular bet, but the leximin rule will reject it (because some person might be made worse off ex post).
The leximin rule satisfies the Pigou–Dalton principle, that is: if utility is "moved" from an agent with more utility to an agent with less utility, and as a result, the utility-difference between them becomes smaller, then resulting alternative is preferred.
Moreover, the leximin rule is the only social-welfare ordering rule which simultaneously satisfies the following three properties: [5] : 266
The egalitarian rule is particularly useful as a rule for fair division. In this setting, the set represents all possible allocations, and the goal is to find an allocation which maximizes the minimum utility, or the leximin vector. This rule has been studied in several contexts:
In welfare economics, a Pareto improvement formalizes the idea of an outcome being "better in every possible way". A change is called a Pareto improvement if it leaves everyone in a society better-off. A situation is called Pareto efficient or Pareto optimal if all possible Pareto improvements have already been made; in other words, there are no longer any ways left to make one person better-off, without making some other person worse-off.
In welfare economics and social choice theory, a social welfare function—also called a socialordering, ranking, utility, or choicefunction—is a function that ranks a set of social states by their desirability. Each person's preferences are combined in some way to determine which outcome is considered better by society as a whole. It can be seen as mathematically formalizing Rousseau's idea of a general will.
Welfare economics is a field of economics that applies microeconomic techniques to evaluate the overall well-being (welfare) of a society.
Social choice theory is a branch of welfare economics that analyzes methods of combining individual opinions, beliefs, or preferences to reach a collective decision or create measures of social well-being. It contrasts with political science in that it is a normative field that studies how societies should make decisions, whereas political science is descriptive. Social choice incorporates insights from economics, mathematics, philosophy, political science, and game theory to find the best ways to combine individual preferences into a coherent whole, called a social welfare function.
In social choice and operations research, the utilitarian rule is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the sum of the utilities of all individuals in society. It is a formal mathematical representation of the utilitarian philosophy, and is often justified by reference to Harsanyi's utilitarian theorem or the Von Neumann–Morgenstern theorem.
Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:
Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.
Resource monotonicity is a principle of fair division. It says that, if there are more resources to share, then all agents should be weakly better off; no agent should lose from the increase in resources. The RM principle has been studied in various division problems.
Fair division of a single homogeneous resource is one of the simplest settings in fair division problems. There is a single resource that should be divided between several people. The challenge is that each person derives a different utility from each amount of the resource. Hence, there are several conflicting principles for deciding how the resource should be divided. A primary conflict is between efficiency and equality. Efficiency is represented by the utilitarian rule, which maximizes the sum of utilities; equality is represented by the egalitarian rule, which maximizes the minimum utility.
Egalitarian equivalence (EE) is a criterion of fair division. In an egalitarian-equivalent division, there exists a certain "reference bundle" such that each agent feels that his/her share is equivalent to .
Combinatorial participatory budgeting, also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.
When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.
In mathematics, leximin order is a total preorder on finite-dimensional vectors. A more accurate, but less common term is leximin preorder. The leximin order is particularly important in social choice theory and fair division.
Egalitarian item allocation, also called max-min item allocation is a fair item allocation problem, in which the fairness criterion follows the egalitarian rule. The goal is to maximize the minimum value of an agent. That is, among all possible allocations, the goal is to find an allocation in which the smallest value of an agent is as large as possible. In case there are two or more allocations with the same smallest value, then the goal is to select, from among these allocations, the one in which the second-smallest value is as large as possible, and so on. Therefore, an egalitarian item allocation is sometimes called a leximin item allocation.
In operations research and social choice, the proportional-fair (PF) rule is a rule saying that, among all possible alternatives, one should pick an alternative that cannot be improved, where "improvement" is measured by the sum of relative improvements possible for each individual agent. It aims to provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness.
Egalitarian cake-cutting is a kind of fair cake-cutting in which the fairness criterion is the egalitarian rule. The cake represents a continuous resource, that has to be allocated among people with different valuations over parts of the resource. The goal in egalitarian cake-cutting is to maximize the smallest value of an agent; subject to this, maximize the next-smallest value; and so on. It is also called leximin cake-cutting, since the optimization is done using the leximin order on the vectors of utilities.
Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.
Donor coordination is a problem in social choice. There are several donors, each of whom wants to donate some money. Each donor supports a different set of targets. The goal is to distribute the total donated amount among the various targets in a way that respects the donors' preferences.
Dominant resource fairness (DRF) is a rule for fair division. It is particularly useful for dividing computing resources in among users in cloud computing environments, where each user may require a different combination of resources. DRF was presented by Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker and Ion Stoica in 2011.