Proportional-fair rule

Last updated

In operations research and social choice, the proportional-fair (PF) rule is a rule saying that, among all possible alternatives, one should pick an alternative that cannot be improved, where "improvement" is measured by the sum of relative improvements possible for each individual agent. It aims to provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness.

Contents

The rule was first presented in the context of rate control in communication networks. [1] However, it is a general social choice rule and can also be used, for example, in resource allocation. [2]

Definition

Let be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from . For example, in a single-winner election, may represent the set of candidates; in a resource allocation setting, may represent all possible allocations of the resource.

Let be a finite set, representing a collection of individuals. For each , let be a utility function , describing the amount of happiness an individual i derives from each possible state.

A social choice rule is a mechanism which uses the data to select some element(s) from which are `best' for society. The question of what 'best' means is the basic question of social choice theory. The proportional-fair rule selects an element such that, for every other state :

Note that the term inside the sum, , represents the relative gain of agent i when switching from x to y. The PF rule prefers a state x over a state y, if and only if If the sum of relative gains when switching from x to y is not positive.

Comparison to other rules

The utilitarian rule selects an element that maximizes the sum of individual utilities, that is, for every other state :

That rule ignores the current utility of the individuals. In particular, it might select a state in which the utilities of some individuals is zero, if the utilities of some other individuals is sufficiently large. The egalitarian rule selects an element that maximizes the smallest individual utilities, that is, for every other state :

This rule ignores the total efficiency of the system. In particular, it might select a state in which the utilities of most individuals are very low, just to make the smallest utility slightly larger.

The proportional-fair rule aims to balance between these two extremes. On one hand, it considers a sum of utilities rather than just the smaller utility; on the other hand, inside the sum, it gives more weight to agents whose current utility is smaller. In particular, if the utility of some individual in x is 0, and there is another state y in which his utility is larger than 0, then the PF rule would prefer state y, as the relative improvement of individual y is infinite (it is divided by 0).

Properties

When the utility sets are convex, a proportional-fair solution always exists. Moreover, it maximizes the product of utilities (also known as the Nash welfare). [3]

When the utility sets are not convex, a proportional-fair solution is not guaranteed to exist. However, when it exists, it still maximizes the product of utilities. [2]

The PF rule in specific settings

Proportional fairness has been studied in various settings.

Related Research Articles

Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related:

In welfare economics, a social welfare function is a function that ranks social states as less desirable, more desirable, or indifferent for every possible pair of social states. Inputs of the function include any variables considered to affect the economic welfare of a society. In using welfare measures of persons in the society as inputs, the social welfare function is individualistic in form. One use of a social welfare function is to represent prospective patterns of collective choice as to alternative social states. The social welfare function provides the government with a simple guideline for achieving the optimal distribution of income.

<span class="mw-page-title-main">Mechanism design</span> Field in game theory

Mechanism design is a field in economics and game theory that takes an objectives-first approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. Because it starts at the end of the game, then goes backwards, it is also called reverse game theory. It has broad applications, from economics and politics in fields such as market design, auction theory and social choice theory to networked-systems.

Utility maximization was first developed by utilitarian philosophers Jeremy Bentham and John Stuart Mill. In microeconomics, the utility maximization problem is the problem consumers face: "How should I spend my money in order to maximize my utility?" It is a type of optimal decision problem. It consists of choosing how much of each available good or service to consume, taking into account a constraint on total spending (income), the prices of the goods and their preferences.

Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a collective decision or social welfare in some sense. Whereas choice theory is concerned with individuals making choices based on their preferences, social choice theory is concerned with how to translate the preferences of individuals into the preferences of a group. A non-theoretical example of a collective decision is enacting a law or set of laws under a constitution. Another example is voting, where individual preferences over candidates are collected to elect a person that best represents the group's preferences.

In social choice and operations research, the utilitarian rule is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the sum of the utilities of all individuals in society. It is a formal mathematical representation of the utilitarian philosophy.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

Group envy-freeness is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

In economics and consumer theory, a linear utility function is a function of the form:

Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

Resource monotonicity is a principle of fair division. It says that, if there are more resources to share, then all agents should be weakly better off; no agent should lose from the increase in resources. The RM principle has been studied in various division problems.

Fair division of a single homogeneous resource is one of the simplest settings in fair division problems. There is a single resource that should be divided between several people. The challenge is that each person derives a different utility from each amount of the resource. Hence, there are several conflicting principles for deciding how the resource should be divided. A primary conflict is between efficiency and equality. Efficiency is represented by the utilitarian rule, which maximizes the sum of utilities; equality is represented by the egalitarian rule, which maximizes the minimum utility.

Combinatorial participatory budgeting,also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.

In mathematics, leximin order is a total preorder on finite-dimensional vectors. A more accurate, but less common term is leximin preorder. The leximin order is particularly important in social choice theory and fair division.

Egalitarian item allocation, also called max-min item allocation is a fair item allocation problem, in which the fairness criterion follows the egalitarian rule. The goal is to maximize the minimum value of an agent. That is, among all possible allocations, the goal is to find an allocation in which the smallest value of an agent is as large as possible. In case there are two or more allocations with the same smallest value, then the goal is to select, from among these allocations, the one in which the second-smallest value is as large as possible, and so on. Therefore, an egalitarian item allocation is sometimes called a leximin item allocation.

Market equilibrium computation is a computational problem in the intersection of economics and computer science. The input to this problem is a market, consisting of a set of resources and a set of agents. There are various kinds of markets, such as Fisher market and Arrow–Debreu market, with divisible or indivisible resources. The required output is a competitive equilibrium, consisting of a price-vector, and an allocation, such that each agent gets the best bundle possible given the budget, and the market clears.

In social choice and operations research, the egalitarian rule is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the minimum utility of all individuals in society. It is a formal mathematical representation of the egalitarian philosophy. It also corresponds to John Rawls' principle of maximizing the welfare of the worst-off individual.

The Method of Equal Shares is a proportional method of counting ballots that applies to participatory budgeting, to committee elections, and to simultaneous public decisions. It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power".

References

  1. Kelly, F P; Maulloo, A K; Tan, D K H (1998-03-01). "Rate control for communication networks: shadow prices, proportional fairness and stability". Journal of the Operational Research Society. 49 (3): 237–252. doi:10.1057/palgrave.jors.2600523. ISSN   0160-5682. S2CID   2876114.
  2. 1 2 3 Nicosia, Gaia; Pacifici, Andrea; Pferschy, Ulrich (2017-03-16). "Price of Fairness for allocating a bounded resource". European Journal of Operational Research. 257 (3): 933–943. arXiv: 1508.05253 . doi:10.1016/j.ejor.2016.08.013. ISSN   0377-2217. S2CID   14229329.
  3. Bertsimas, Dimitris; Farias, Vivek F.; Trichakis, Nikolaos (2011-02-01). "The Price of Fairness". Operations Research. 59 (1): 17–31. doi:10.1287/opre.1100.0865. hdl: 1721.1/69093 . ISSN   0030-364X.
  4. Kushner, H. J.; Whiting, P.A. (July 2004), "Convergence of proportional-fair sharing algorithms under general conditions", IEEE Transactions on Wireless Communications, 3 (4): 1250–1259, CiteSeerX   10.1.1.8.6408 , doi:10.1109/TWC.2004.830826, S2CID   6780351.
  5. Bonald, T.; Massoulié, L.; Proutière, A.; Virtamo, J. (2006-06-01). "A queueing analysis of max-min fairness, proportional fairness and balanced fairness". Queueing Systems. 53 (1): 65–84. doi:10.1007/s11134-006-7587-7. ISSN   1572-9443. S2CID   1207054.