Eigenplane

Last updated

In mathematics, an eigenplane is a two-dimensional invariant subspace in a given vector space. By analogy with the term eigenvector for a vector which, when operated on by a linear operator is another vector which is a scalar multiple of itself, the term eigenplane can be used to describe a two-dimensional plane (a 2-plane), such that the operation of a linear operator on a vector in the 2-plane always yields another vector in the same 2-plane.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Dimension minimum number of independent coordinates needed to specify any point within a mathematical space

In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface such as a plane or the surface of a cylinder or sphere has a dimension of two because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed to locate a point within these spaces.

In mathematics, an invariant subspace of a linear mapping T : VV from some vector space V to itself is a subspace W of V that is preserved by T; that is, T(W) ⊆ W.

A particular case that has been studied is that in which the linear operator is an isometry M of the hypersphere (written S3) represented within four-dimensional Euclidean space:

Isometry distance-preserving function between metric spaces

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

Hypersphere n-sphere embedded in an (n + 1)-dimensional Euclidean space

In geometry of higher dimensions, a hypersphere is the set of points at a constant distance from a given point called its centre. It is a manifold of codimension one—that is, with one dimension less than that of the ambient space.

Euclidean space Generalization of Euclidean geometry to higher dimensions

In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and similar spaces of higher dimension. It is named after the Ancient Greek mathematician Euclid of Alexandria. The term "Euclidean" distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions.

where s and t are four-dimensional column vectors and Λθ is a two-dimensional eigenrotation within the eigenplane.

In the usual eigenvector problem, there is freedom to multiply an eigenvector by an arbitrary scalar; in this case there is freedom to multiply by an arbitrary non-zero rotation.

Rotation circular movement of an object around a center (or point) of rotation . A three-dimensional object always rotates around an imaginary line called a rotation axis

A rotation is a circular movement of an object around a center of rotation. A three-dimensional object can always be rotated around an infinite number of imaginary lines called rotation axes. If the axis passes through the body's center of mass, the body is said to rotate upon itself, or spin. A rotation about an external point, e.g. the Earth about the Sun, is called a revolution or orbital revolution, typically when it is produced by gravity. The axis is called a pole.

This case is potentially physically interesting in the case that the shape of the universe is a multiply connected 3-manifold, since finding the angles of the eigenrotations of a candidate isometry for topological lensing is a way to falsify such hypotheses.

Shape of the universe The local and global geometry of the universe

The shape of the universe is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as of a continuous object. The shape of the universe is related to general relativity, which describes how spacetime is curved and bent by mass and energy.

3-manifold 3-dimensional manifold

In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

Angle figure formed by two rays; coordinate system in one-dimensional space or The amount of turn between two straight lines that have a common end point (the vertex).

In plane geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane. Angles are also formed by the intersection of two planes in Euclidean and other spaces. These are called dihedral angles. Angles formed by the intersection of two curves in a plane are defined as the angle determined by the tangent rays at the point of intersection. Similar statements hold in space, for example, the spherical angle formed by two great circles on a sphere is the dihedral angle between the planes determined by the great circles.

See also

Physical cosmology branch of astronomy

Physical cosmology is a branch of cosmology concerned with the studies of the largest-scale structures and dynamics of the Universe and with fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed us to understand those physical laws. Physical cosmology, as it is now understood, began with the development in 1915 of Albert Einstein's general theory of relativity, followed by major observational discoveries in the 1920s: first, Edwin Hubble discovered that the universe contains a huge number of external galaxies beyond our own Milky Way; then, work by Vesto Slipher and others showed that the universe is expanding. These advances made it possible to speculate about the origin of the universe, and allowed the establishment of the Big Bang Theory, by Georges Lemaître, as the leading cosmological model. A few researchers still advocate a handful of alternative cosmologies; however, most cosmologists agree that the Big Bang theory explains the observations better.

Related Research Articles

Angular momentum measure of the extent to which an object will continue to rotate in the absence of an applied torque

In physics, angular momentum is the rotational equivalent of linear momentum. It is an important quantity in physics because it is a conserved quantity—the total angular momentum of a closed system remains constant.

In mathematics, a linear map is a mapping VW between two modules that preserves the operations of addition and scalar multiplication.

In mathematics, an operator is generally a mapping that acts on elements of a space to produce other elements of the same space. The most common operators are linear maps, which act on vector spaces. However, when using "linear operator" instead of "linear map", mathematicians often mean actions on vector spaces of functions, which also preserve other properties, such as continuity. For example, differentiation and indefinite integration are linear operators; operators that are built from them are called differential operators, integral operators or integro-differential operators.

Symmetry group Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

Tensor geometric object

In mathematics, a tensor is a geometric object that maps in a multi-linear manner geometric vectors, scalars, and other tensors to a resulting tensor. Vectors and scalars which are often used in elementary physics and engineering applications, are considered as the simplest tensors. Vectors from the dual space of the vector space, which supplies the geometric vectors, are also included as tensors. Geometric in this context is chiefly meant to emphasize independence of any selection of a coordinate system.

In mathematics, the tensor product VW of two vector spaces{{V and W is itself a vector space, endowed with the operation of bilinear composition, denoted by , from ordered pairs in the Cartesian product V × W onto VW in a way that generalizes the outer product. The tensor product of V and W is the vector space generated by the symbols vw, with vV and wW, in which the relations of bilinearity are imposed for the product operation , and no other relations are assumed to hold. The tensor product space is thus the "freest" such vector space, in the sense of having the fewest constraints.

Vector space mathematical structure formed by a collection of elements called vectors

A vector space is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below.

Plane wave Type of wave propagating in 3 dimensions

In the physics of wave propagation, a plane wave is a wave whose wavefronts are infinite parallel planes. Mathematically a plane wave takes the form

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

Singular value decomposition matrix decomposition

In linear algebra, the singular-value decomposition (SVD) is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition of a positive semidefinite normal matrix to any matrix via an extension of the polar decomposition. It has many useful applications in signal processing and statistics.

Unit quaternions, also known as versors, provide a convenient mathematical notation for representing orientations and rotations of objects in three dimensions. Compared to Euler angles they are simpler to compose and avoid the problem of gimbal lock. Compared to rotation matrices they are more compact, more numerically stable, and more efficient. Quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites and crystallographic texture analysis.

Rotation (mathematics) concept originating in geometry; motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space. A clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.

Euclidean group Isometry group of Euclidean space

In mathematics, the Euclidean group E(n), also known as ISO(n) or similar, is the symmetry group of n-dimensional Euclidean space. Its elements are the isometries associated with the Euclidean distance, and are called Euclidean isometries, Euclidean transformations or rigid transformations.

Bivector

In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered an order zero quantity, and a vector is an order one quantity, then a bivector can be thought of as being of order two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions. They can be used to generate rotations in any number of dimensions, and are a useful tool for classifying such rotations. They also are used in physics, tying together a number of otherwise unrelated quantities.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that changes by only a scalar factor when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

Three-dimensional space geometric three-parameter model of the physical universe

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

Point reflection Geometric symmetry operation

In geometry, a point reflection or inversion in a point is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.

Two-dimensional space geometric model of the planar projection of the physical universe

Two-dimensional space is a geometric setting in which two values are required to determine the position of an element. In Mathematics, it is commonly represented by the symbol 2. For a generalization of the concept, see dimension.