Electric sonic amplitude

Last updated

Electric sonic amplitude or electroacoustic sonic amplitude is an electroacoustic phenomenon that is the reverse to colloid vibration current. It occurs in colloids, emulsions and other heterogeneous fluids under the influence of an oscillating electric field. This field moves particles relative to the liquid, which generates ultrasound.

Electric sonic amplitude was experimentally discovered by Oja and co-authors in the early 1980s. [1] It is also widely used for characterizing zeta potential in dispersions and emulsions. There is review of the theory of this effect, its experimental verification, and multiple applications published by Hunter. [2]

See also

Related Research Articles

Colloid Mixture of an insoluble substance microscopically dispersed throughout another substance

A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. However, some definitions specify that the particles must be dispersed in a liquid, and others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture. A colloid has a dispersed phase and a continuous phase. The dispersed phase particles have a diameter of approximately 1 nanometre to 1 micrometre.

Electrophoresis Motion of charged particles in electric field

Electrophoresis is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric field. Electrophoresis of positively charged particles (cations) is sometimes called cataphoresis, while electrophoresis of negatively charged particles (anions) is sometimes called anaphoresis.

Suspension (chemistry) Heterogeneous mixture of solid particles dispersed in a medium

In chemistry, a suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye, usually must be larger than one micrometer, and will eventually settle, although the mixture is only classified as a suspension when and while the particles have not settled out.

Zeta potential Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter.

A streaming current and streaming potential are two interrelated electrokinetic phenomena studied in the areas of surface chemistry and electrochemistry. They are an electric current or potential which originates when an electrolyte is driven by a pressure gradient through a channel or porous plug with charged walls.

Electroacoustic phenomena arise when ultrasound propagates through a fluid containing ions. The associated particle motion generates electric signals because ions have electric charge. This coupling between ultrasound and electric field is called electroacoustic phenomena. The fluid might be a simple Newtonian liquid, or complex heterogeneous dispersion, emulsion or even a porous body. There are several different electroacoustic effects depending on the nature of the fluid.

The Dukhin number is a dimensionless quantity that characterizes the contribution of the surface conductivity to various electrokinetic and electroacoustic effects, as well as to electrical conductivity and permittivity of fluid heterogeneous systems. The number was named after Stanislav and Andrei Dukhin.

Double layer (surface science) Condensed matter physics

A double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

Surface conductivity

Surface conductivity is an additional conductivity of an electrolyte in the vicinity of the charged interfaces. Surface and volume conductivity of liquids correspond to the electrically driven motion of ions in an electric field. A layer of counter ions of the opposite polarity to the surface charge exists close to the interface. It is formed due to attraction of counter-ions by the surface charges. This layer of higher ionic concentration is a part of the interfacial double layer. The concentration of the ions in this layer is higher as compared to the ionic strength of the liquid bulk. This leads to the higher electric conductivity of this layer.

Electrokinetic phenomena are a family of several different effects that occur in heterogeneous fluids, or in porous bodies filled with fluid, or in a fast flow over a flat surface. The term heterogeneous here means a fluid containing particles. Particles can be solid, liquid or gas bubbles with sizes on the scale of a micrometer or nanometer. There is a common source of all these effects—the so-called interfacial 'double layer' of charges. Influence of an external force on the diffuse layer generates tangential motion of a fluid with respect to an adjacent charged surface. This force might be electric, pressure gradient, concentration gradient, or gravity. In addition, the moving phase might be either continuous fluid or dispersed phase.

Colloid vibration current

Colloid vibration current is an electroacoustic phenomenon that arises when ultrasound propagates through a fluid that contains ions and either solid particles or emulsion droplets.

The ion vibration current (IVI) and the associated ion vibration potential is an electric signal that arises when an acoustic wave propagates through a homogeneous fluid.

Dynamic electrophoretic mobility is a parameter that determines intensity of electroacoustic phenomena, such as Colloid Vibration Current and Electric Sonic Amplitude in colloids. It is similar to electrophoretic mobility, but at high frequency, on a scale of megahertz. Usual electrophoretic mobility is the low frequency limit of the dynamic electrophoretic mobility.

Electrophoretic light scattering is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.

Sedimentation potential occurs when dispersed particles move under the influence of either gravity or centrifugation in a medium. This motion disrupts the equilibrium symmetry of the particle's double layer. While the particle moves, the ions in the electric double layer lag behind due to the liquid flow. This causes a slight displacement between the surface charge and the electric charge of the diffuse layer. As a result, the moving particle creates a dipole moment. The sum of all of the dipoles generates an electric field which is called sedimentation potential. It can be measured with an open electrical circuit, which is also called sedimentation current.

Zeta potential titration

Zeta potential titration is a titration of heterogeneous systems, for example colloids and emulsions. Solids in such systems have very high surface area. This type of titration is used to study the zeta potential of these surfaces under different conditions. Details of zeta potential definition and measuring techniques can be found in the International Standard.

Electrofiltration is a method that combines membrane filtration and electrophoresis in a dead-end process.

Dispersion Technology Inc is a scientific instrument manufacturer located in Bedford Hills, New York. It was founded in 1996 by Philip Goetz and Dr. Andrei Dukhin. The company develops and sells analytical instruments intended for characterizing concentrated dispersions and emulsions, complying with the International Standards for acoustic particle sizing ISO 20998 and Electroacoustic zeta potential measurement ISO 13099.

Jan Theodoor Gerard Overbeek was a Dutch professor of physical chemistry at the Utrecht University.

References

  1. Oja, T., Petersen, G., and Cannon, D. "Measurement of Electric-Kinetic Properties of a Solution", U.S. Patent 4,497,208 1985
  2. Hunter, R (1998). "Recent developments in the electroacoustic characterisation of colloidal suspensions and emulsions". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 141: 37. doi:10.1016/S0927-7757(98)00202-7.