Electrochemical regeneration

Last updated

The electrochemical regeneration of activated carbon based adsorbents involves the removal of molecules adsorbed onto the surface of the adsorbent with the use of an electric current in an electrochemical cell restoring the carbon's adsorptive capacity. Electrochemical regeneration represents an alternative to thermal regeneration commonly used in waste water treatment applications. Common adsorbents include powdered activated carbon (PAC), granular activated carbon (GAC) and activated carbon fibre.

Contents

Regeneration for adsorbent re-use

In waste water treatment, the most commonly used adsorbent is granular activated carbon (GAC), often used as to treat both liquid and gas phase volatile organic compounds and organic pollutants. [1] [2] Activated carbon beds vary in lifetime depending on the concentration of the pollutant(s) being removed, their associated adsorption isotherms, inlet flow rates and required discharge consents. Life- times of these beds can range between hours and months. Activated carbon is often landfilled at the end of its useful life but sometimes it is possible to regenerate it restoring its adsorptive capacity allowing it to be re-used. Thermal regeneration is the most prolific regeneration technique but has drawbacks in terms of high energy and commercial costs and a significant carbon footprint. [3] These drawbacks have encouraged research into alternative regeneration techniques such as electrochemical regeneration.

Electrochemically regenerating activated carbons

Once the adsorptive capacity of the activated carbon bed has been exhausted by the adsorption of pollutant molecules, the carbon is transferred to an electrochemical cell (to either the anode or the cathode) in which electrochemical regeneration can occur.

Principles

There are several mechanisms by which passing a current through the electrochemical cell can encourage pollutant desorption. Ions generated at the electrodes can change local pH conditions in the divided cell which affect the adsorption equilibrium and have been shown to promote desorption of organic pollutants such as phenols from the carbon surface. [3] [4] Other mechanisms include reactions between the ions generated and the adsorbed pollutants resulting in the formation of a species with a lower adsorptive affinity for activated carbon that subsequently desorb, or the oxidative destruction of the organics on the carbon surface. [5] It is agreed that the main mechanisms are based on desorption induced regeneration as electrochemical effects are confined to the surface of the porous carbons so cannot be responsible for bulk regeneration. [3] [6] The performance of different regeneration methods can be directly compared using the regeneration efficiency. This is defined as:

Cathodic regeneration

The cathode is the reducing electrode and generates OH ions which increases local pH conditions. An increase in pH can have the effect of promoting the desorption of pollutants into solution where they can migrate to the anode and undergo oxidation hence destruction. Studies on cathodic regeneration have shown regeneration efficiencies for adsorbed organic pollutants such as phenols of the order of 85% based on regeneration times of 4 hours with applied currents between 10-100 mA. [3] However, due to mass transfer limitations between the cathode and anode, there is often residual pollutant left in the cathode unless large currents or long regeneration times are employed.

Anodic regeneration

The anode is the oxidising electrode and as a result has a lower localised pH during electrolysis which also promotes desorption of some organic pollutants. Regeneration efficiencies of activated carbon in the anodic compartment are lower than that achievable in the cathodic compartment by between 5-20% for the same regeneration times and currents, [3] [6] however there is no observed residual organic due to the strong oxidising nature of the anode. [6]

Repeated adsorption-regeneration

For the bulk of carbonaceous adsorbents regeneration efficiency decreases over subsequent cycles as a result of pore blockages and damage to adsorption sites by the applied current. Decreases in regeneration efficiency are typically a further 2% per cycle. [3] Current leading edge research focuses on developing adsorbents able to regenerate 100% of their adsorptive capacity through electrochemical regeneration. [7] [8] [9]

Commercial systems

Currently there are a very limited number of commercially available carbon based adsorption- electrochemical regeneration systems. One system that does exist uses a carbon adsorbent called Nyex in a continuous adsorption-regeneration system that uses electrochemical regeneration to adsorb and destroy organic pollutants. [10]

Related Research Articles

<span class="mw-page-title-main">Adsorption</span> Phenomenon of surface adhesion

Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid is dissolved by or permeates a liquid or solid. While adsorption does often precede absorption, which involves the transfer of the absorbate into the volume of the absorbent material, alternatively, adsorption is distinctly a surface phenomenon, wherein the adsorbate does not penetrate through the material surface and into the bulk of the adsorbent. The term sorption encompasses both adsorption and absorption, and desorption is the reverse of sorption.

<span class="mw-page-title-main">Activated carbon</span> Form of carbon processed to have small, low-volume pores that increase the surface area

Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area available for adsorption or chemical reactions. Activation is analogous to making popcorn from dried corn kernels: popcorn is light, fluffy, and its kernels have a high surface-area-to-volume ratio. Activated is sometimes replaced by active.

<span class="mw-page-title-main">Solid oxide fuel cell</span> Fuel cell that produces electricity by oxidization

A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.

<span class="mw-page-title-main">Heterogeneous catalysis</span> Type of catalysis involving reactants & catalysts in different phases of matter

Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures, or anywhere an interface is present.

Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.

Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The observations are very often referred to as physical adsorption or physisorption. In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller presented their theory in the Journal of the American Chemical Society. BET theory applies to systems of multilayer adsorption that usually utilizes a probing gas (called the adsorbate) that does not react chemically with the adsorptive (the material upon which the gas attaches to) to quantify specific surface area. Nitrogen is the most commonly employed gaseous adsorbate for probing surface(s). For this reason, standard BET analysis is most often conducted at the boiling temperature of N2 (77 K). Other probing adsorbates are also utilized, albeit less often, allowing the measurement of surface area at different temperatures and measurement scales. These include argon, carbon dioxide, and water. Specific surface area is a scale-dependent property, with no single true value of specific surface area definable, and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section.

<span class="mw-page-title-main">Pressure swing adsorption</span> Method of gases separation using selective adsorption under pressure

Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed gas.

<span class="mw-page-title-main">Carbon filtering</span> Filtering method

Carbon filtering is a method of filtering that uses a bed of activated carbon to remove impurities from a fluid using adsorption.

In electrochemistry, electrosynthesis is the synthesis of chemical compounds in an electrochemical cell. Compared to ordinary redox reactions, electrosynthesis sometimes offers improved selectivity and yields. Electrosynthesis is actively studied as a science and also has industrial applications. Electrooxidation has potential for wastewater treatment as well.

<span class="mw-page-title-main">Lithium-ion capacitor</span> Hybrid type of capacitor

A lithium-ion capacitor is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Capacitive deionization</span>

Capacitive deionization (CDI) is a technology to deionize water by applying an electrical potential difference over two electrodes, which are often made of porous carbon. In other words, CDI is an electro-sorption method using a combination of a sorption media and an electrical field to separate ions and charged particles. Anions, ions with a negative charge, are removed from the water and are stored in the positively polarized electrode. Likewise, cations are stored in the cathode, which is the negatively polarized electrode.

Electrochemical regeneration of activated carbon adsorbents such as granular activated carbon present an alternative to thermal regeneration or land filling at the end of useful adsorbent life. Continuous adsorption-electrochemical regeneration encompasses the adsorption and regeneration steps, typically separated in the bulk of industrial processes due to long adsorption equilibrium times, into one continuous system. This is possible using a non-porous, electrically conducting carbon derivative called Nyex. The non-porosity of Nyex allows it to achieve its full adsorptive capacity within a few minutes and its electrical conductivity allows it to form part of the electrode in an electrochemical cell. As a result of its properties Nyex can undergo quick adsorption and fast electrochemical regeneration in a combined adsorption-electrochemical regeneration cell achieving 100% regeneration efficiency.

Adsorbed natural gas (ANG) is a process to store natural gas. Natural gas burns cleanly as a fuel, making it useful in many vehicles and applications such as cooking, heating or running generators. It contains mostly methane and ethane. These light gases have very high vapor pressure at ambient temperatures, and their storage requires either high-pressure compression (CNG) or an extreme reduction of temperature (LNG); or adsorbent systems — this is ANG. In the ANG process, natural gas adsorbs to a porous adsorbent at relatively low pressure and ambient temperature, solving both the high-pressure and low-temperature problems. If a suitable adsorbent is used, it is possible to store more gas in an adsorbent-filled vessel than in an empty vessel at the same pressure. The amount of adsorbed gas depends on pressure, temperature and adsorbent type. Since this adsorption process is exothermic, an increase in pressure or a decrease in temperature enhances the efficiency of the adsorption process.

Solid sorbents for carbon capture include a diverse range of porous, solid-phase materials, including mesoporous silicas, zeolites, and metal-organic frameworks. These have the potential to function as more efficient alternatives to amine gas treating processes for selectively removing CO2 from large, stationary sources including power stations. While the technology readiness level of solid adsorbents for carbon capture varies between the research and demonstration levels, solid adsorbents have been demonstrated to be commercially viable for life-support and cryogenic distillation applications. While solid adsorbents suitable for carbon capture and storage are an active area of research within materials science, significant technological and policy obstacles limit the availability of such technologies.

The potential theory of Polanyi, also called Polanyi adsorption potential theory, is a model of adsorption proposed by Michael Polanyi where adsorption can be measured through the equilibrium between the chemical potential of a gas near the surface and the chemical potential of the gas from a large distance away. In this model, he assumed that the attraction largely due to Van Der Waals forces of the gas to the surface is determined by the position of the gas particle from the surface, and that the gas behaves as an ideal gas until condensation where the gas exceeds its equilibrium vapor pressure. While the adsorption theory of Henry is more applicable in low pressure and BET adsorption isotherm equation is more useful at from 0.05 to 0.35 P/Po, the Polanyi potential theory has much more application at higher P/Po (~0.1–0.8).

Adsorbable Organic Halides (AOX) is a measure of the organic halogen load at a sampling site such as soil from a land fill, water, or sewage waste. The procedure measures chlorine, bromine, and iodine as equivalent halogens, but does not measure fluorine levels in the sample.

<span class="mw-page-title-main">Electrochemical stripping analysis</span> Method of chemical analysis

Electrochemical stripping analysis is a set of analytical chemistry methods based on voltammetry or potentiometry that are used for quantitative determination of ions in solution. Stripping voltammetry have been employed for analysis of organic molecules as well as metal ions. Carbon paste, glassy carbon paste, and glassy carbon electrodes when modified are termed as chemically modified electrodes and have been employed for the analysis of organic and inorganic compounds.

Electro-oxidation(EO or EOx), also known as anodic oxidation or electrochemical oxidation (EC), is a technique used for wastewater treatment, mainly for industrial effluents, and is a type of advanced oxidation process (AOP). The most general layout comprises two electrodes, operating as anode and cathode, connected to a power source. When an energy input and sufficient supporting electrolyte are provided to the system, strong oxidizing species are formed, which interact with the contaminants and degrade them. The refractory compounds are thus converted into reaction intermediates and, ultimately, into water and CO2 by complete mineralization.

Sorption enhanced water gas shift (SEWGS) is a technology that combines a pre-combustion carbon capture process with the water gas shift reaction (WGS) in order to produce a hydrogen rich stream from the syngas fed to the SEWGS reactor.

References

  1. Moreno-Castilla, C (2004). "Adsorption of organic molecules from aqueous solutions on carbon materials". Carbon. 42: 83–94. doi:10.1016/j.carbon.2003.09.022.
  2. Das, D; Gaur, V.; Verma, N. (2004). "Removal of volatile organic compound by activated carbon fiber". Carbon. 42 (14): 2949–2962. doi:10.1016/j.carbon.2004.07.008.
  3. 1 2 3 4 5 6 Narbaitz, R. M; Karimi-Jashni, A (1994). "Removal of volatile organic compound by activated carbon fiber". Carbon. 42 (14): 2949–2962. doi:10.1016/j.carbon.2004.07.008.
  4. Mehta, M. P; Flora, J. R. V (1997). "Effects of electrochemical treatment of granular activated carbon on surface acid groups and the adsorptive capacity for phenol". Water Research. 31 (9): 2171–2176. doi:10.1016/S0043-1354(97)00057-2.
  5. Choi, J. J (1997). "Oxidative removal of malodorous volatile sulfur compounds by air over an activated carbon fiber". Journal of Industrial and Engineering Chemistry. 3 (1): 56–62.
  6. 1 2 3 Zhang, H; Ye, L.; Zhong, H (2002). "Regeneration of phenol-saturated activated carbon in an electrochemical reactor". Journal of Chemical Technology and Biochemical Technology. 77 (11): 1246–1250. doi: 10.1002/jctb.699 .
  7. Brown, N; Roberts, E. P. L (2007). "Electrochemical pre-treatment of effluents contain- ing chlorinated compounds using an adsorbent". Journal of Applied Electrochemistry. 37 (11): 1329–1335. doi:10.1007/s10800-007-9376-3. S2CID   98745964.
  8. Brown, N; Roberts, E. P. L.; Chasiotis, A.; Cherdron, T.; Sanghrajka, N (2004). "Atrazine removal using adsorption and electrochemical regeneration". Water Research. 38 (13): 3067–3074. doi:10.1016/j.watres.2004.04.043. PMID   15261545.
  9. Brown, N; Roberts, E. P. L.; Garforth, A. A.; Dryfe, R. A. W (2004). "Electrochemical regeneration of a carbon based adsorbent loaded with cystal violet dye". Electrochimica Acta. 49 (20): 3269–3281. doi:10.1016/j.electacta.2004.02.040.
  10. http://news.bbc.co.uk/1/hi/england/manchester/6176729.stm BBC coverage of an innovative electrochemical regeneration wastewater treatment technique