Electronic voting machine

Last updated

An electronic voting machine is a voting machine based on electronics. Two main technologies exist: optical scanning and direct recording (DRE).

Contents

Optical scanning

Counting ballots by an optical scanner, San Jose, California, 2018

In an optical scan voting system, or marksense, each voter's choices are marked on one or more pieces of paper, which then go through a scanner. The scanner creates an electronic image of each ballot, interprets it, creates a tally for each candidate, and usually stores the image for later review.

The voter may mark the paper directly, usually in a specific location for each candidate. Or the voter may select choices on an electronic screen, which then prints the chosen names, and a bar code or QR code summarizing all choices, on a sheet of paper to put in the scanner. [1]

Hundreds of errors in optical scan systems have been found, from feeding ballots upside down, multiple ballots pulled through at once in central counts, paper jams, broken, blocked or overheated sensors which misinterpret some or many ballots, printing which does not align with the programming, programming errors, and loss of files. [2] The cause of each programming error is rarely found, so it is not known how many were accidental or intentional.

Direct-recording electronic (DRE)

DRE with paper for voter to verify (VVPAT) IVotronicVVPAT.jpg
DRE with paper for voter to verify (VVPAT)

In a DRE voting machine system, a touch screen displays choices to the voter, who selects choices, and can change their mind as often as needed, before casting the vote. Staff initialize each voter once on the machine, to avoid repeat voting. Voting data are recorded in memory components, and can be copied out at the end of the election.

Some of these machines also print names of chosen candidates on paper for the voter to verify, though less than 40% verify. [3] These names on paper are kept behind glass in the machine, and can be used for election audits and recounts if needed. The tally of the voting data is printed on the end of the paper tape. The paper tape is called a Voter-verified paper audit trail (VVPAT). The VVPATs can be tallied at 20–43 seconds of staff time per vote (not per ballot). [4] [5]

For machines without VVPAT, there is no record of individual votes to check. For machines with VVPAT, checking is more expensive than with paper ballots, because on the flimsy thermal paper in a long continuous roll, staff often lose their place, and the printout has each change by each voter, not just their final decisions. [5]

Problems have included public web access to the software, before it is loaded into machines for each election, and programming errors which increment different candidates than voters select. [2] The Federal Constitutional Court of Germany found that with existing machines could not be allowed because they could not be monitored by the public. [6]

Successful hacks have been demonstrated under laboratory conditions. [7] [8] [9] [10]

See also

Related Research Articles

A ballot is a device used to cast votes in an election and may be found as a piece of paper or a small ball used in secret voting. It was originally a small ball used to record decisions made by voters in Italy around the 16th century.

A voting machine is a machine used to record votes in an election without paper. The first voting machines were mechanical but it is increasingly more common to use electronic voting machines. Traditionally, a voting machine has been defined by its mechanism, and whether the system tallies votes at each voting location, or centrally. Voting machines should not be confused with tabulating machines, which count votes done by paper ballot.

Electronic voting is voting that uses electronic means to either aid or take care of casting and counting ballots.

<span class="mw-page-title-main">Electronic voting in India</span> Component of Indian electoral system

Electronic voting is the standard means of conducting elections using Electronic Voting Machines (EVMs) in India. The system was developed and tested by the state-owned Electronics Corporation of India and Bharat Electronics in the 1990s. They were introduced in Indian elections between 1998 and 2001, in a phased manner. Prior to the introduction of electronic voting, India used paper ballots and manual counting. The paper ballots method was widely criticised because of fraudulent voting and booth capturing, where party loyalists captured booths and stuffed them with pre-filled fake ballots. The printed paper ballots were also more expensive, requiring substantial post-voting resources to count hundreds of millions of individual ballots. Embedded EVM features such as "electronically limiting the rate of casting votes to five per minute", a security "lock-close" feature, an electronic database of "voting signatures and thumb impressions" to confirm the identity of the voter, conducting elections in phases over several weeks while deploying extensive security personnel at each booth have helped reduce electoral fraud and abuse, eliminate booth capturing and create more competitive and fairer elections. Indian EVMs are stand-alone machines built with once write, read-only memory. The EVMs are produced with secure manufacturing practices, and by design, are self-contained, battery-powered and lack any networking capability. They do not have any wireless or wired internet components and interface. The M3 version of the EVMs includes the VVPAT system.

Vote counting is the process of counting votes in an election. It can be done manually or by machines. In the United States, the compilation of election returns and validation of the outcome that forms the basis of the official results is called canvassing.

Voter verifiable paper audit trail (VVPAT) or verified paper record (VPR) is a method of providing feedback to voters using a ballotless voting system. A VVPAT is intended as an independent verification system for voting machines designed to allow voters to verify that their vote was cast correctly, to detect possible election fraud or malfunction, and to provide a means to audit the stored electronic results. It contains the name of the candidate and symbol of the party/individual candidate. While it has gained in use in the United States compared with ballotless voting systems without it, it looks unlikely to overtake hand-marked ballots.

<span class="mw-page-title-main">Election Systems & Software</span>

Election Systems & Software (ES&S) is an Omaha, Nebraska-based company that manufactures and sells voting machine equipment and services. The company's offerings include vote tabulators, direct-recording electronic (DRE) machines, voter registration and election management systems, ballot-marking devices, electronic poll books, Ballot on Demand printing services, and absentee voting-by-mail services.

A DRE voting machine, or direct-recording electronic voting machine, records votes by means of a ballot display provided with mechanical or electro-optical components that can be activated by the voter. These are typically buttons or a touchscreen; and they process data using a computer program to record voting data and ballot images in memory components. After the election, it produces a tabulation of the voting data stored in a removable memory component and as printed copy. The system may also provide a means for transmitting individual ballots or vote totals to a central location for consolidating and reporting results from precincts at the central location. The device started to be massively used in 1996 in Brazil where 100% of the elections voting system is carried out using machines.

The Mercuri method is the most popular and notable form of a voter verified paper audit trail (VVPAT). It is a modification to direct-recording electronic (DRE) voting machines to provide a physical paper audit record that may be used to verify an electronic vote count.

End-to-end auditable or end-to-end voter verifiable (E2E) systems are voting systems with stringent integrity properties and strong tamper resistance. E2E systems often employ cryptographic methods to craft receipts that allow voters to verify that their votes were counted as cast, without revealing which candidates were voted for. As such, these systems are sometimes referred to as receipt-based systems.

An optical scan voting system is an electronic voting system and uses an optical scanner to read marked paper ballots and tally the results.

An election recount is a repeat tabulation of votes cast in an election that is used to determine the correctness of an initial count. Recounts will often take place if the initial vote tally during an election is extremely close. Election recounts will often result in changes in contest tallies. Errors can be found or introduced from human factors, such as transcription errors, or machine errors, such as misreads of paper ballots.

Electronic voting by country varies and may include voting machines in polling places, centralized tallying of paper ballots, and internet voting. Many countries use centralized tallying. Some also use electronic voting machines in polling places. Very few use internet voting. Several countries have tried electronic approaches and stopped, because of difficulties or concerns about security and reliability.

Scantegrity is a security enhancement for optical scan voting systems, providing such systems with end-to-end (E2E) verifiability of election results. It uses confirmation codes to allow a voter to prove to themselves that their ballot is included unmodified in the final tally. The codes are privacy-preserving and offer no proof of which candidate a voter voted for. Receipts can be safely shown without compromising ballot secrecy.

<span class="mw-page-title-main">Risk-limiting audit</span>

A risk-limiting audit (RLA) is a post-election tabulation auditing procedure which can limit the risk that the reported outcome in an election contest is incorrect. It generally involves (1) storing voter-verified paper ballots securely until they can be checked, and (2) manually examining a statistical sample of the paper ballots until enough evidence is gathered to meet the risk limit.

A ballot marking device (BMD) or vote recorder is a type of voting machine used by voters to record votes on physical ballots. In general, ballot marking devices neither store nor tabulate ballots, but only allow the voter to record votes on ballots that are then stored and tabulated elsewhere.

<span class="mw-page-title-main">Election audit</span>

An election audit is any review conducted after polls close for the purpose of determining whether the votes were counted accurately or whether proper procedures were followed, or both.

<span class="mw-page-title-main">Electronic voting in the United States</span> Facet of American elections

Electronic voting in the United States involves several types of machines: touchscreens for voters to mark choices, scanners to read paper ballots, scanners to verify signatures on envelopes of absentee ballots, and web servers to display tallies to the public. Aside from voting, there are also computer systems to maintain voter registrations and display these electoral rolls to polling place staff.

Direct Recording Electronic with Integrity and Enforced Privacy (DRE-ip) is an End-to-End (E2E) verifiable e-voting system without involving any tallying authorities, proposed by Siamak Shahandashti and Feng Hao in 2016. It improves a previous DRE-i system by using a real-time computation strategy and providing enhanced privacy. A touch-screen based prototype of the system was trialed in the Gateshead Civic Centre polling station on 2 May 2019 during the 2019 United Kingdom local elections with positive voter feedback. A proposal that includes DRE-ip as a solution for large-scale elections was ranked 3rd place in the 2016 Economist Cybersecurity Challenge jointly organized by The Economist and Kaspersky Lab.

Direct Recording Electronic with Integrity (DRE-i) is an End-to-End (E2E) verifiable e-voting system, first designed by Feng Hao and Matthew Kreeger in 2010 and formally published in 2014 with additional authors Brian Randell, Dylan Clarke, Siamak Shahandashti, and Peter Hyun-Jeen Lee.

References

  1. "Ballot Marking Devices". Verified Voting. Archived from the original on 2020-08-05. Retrieved 2020-02-28.
  2. 1 2 Norden, Lawrence (2010-09-16). "Voting system failures: a database solution" (PDF). Brennan Center, NYU. Retrieved 2020-07-07.
  3. Cohn, Jennifer (2018-05-05). "What is the latest threat to democracy?". Medium. Archived from the original on 2020-11-20. Retrieved 2020-02-28.
  4. Theisen, Ellen (2005-06-14). "Cost Estimate for Hand Counting 2% of the Precincts in the U.S." (PDF). VotersUnite.org. Retrieved 2020-02-14.
  5. 1 2 "VOTER VERIFIED PAPER AUDIT TRAIL Pilot Project Report" (PDF). Georgia Secretary of State. 2007-04-10. Archived from the original (PDF) on 2008-11-26. Retrieved 2020-02-15.
  6. German Federal Constitutional Court, Press release no. 19/2009 of 3 March 2009 Archived 4 April 2009 at the Wayback Machine
  7. Security Analysis of the Diebold AccuVote-TS Voting Machine
  8. Nedap/Groenendaal ES3B voting computer, a security analysis
  9. Dutch citizens group cracks Nedap's voting computer Archived 2007-01-17 at the Wayback Machine
  10. Use of SDU voting computers banned during Dutch general elections (Heise.de, 31. October 2006) Archived September 23, 2008, at the Wayback Machine