Elevational diversity gradient (EDG) is an ecological pattern where biodiversity changes with elevation. The EDG states that species richness tends to increase as elevation increases, up to a certain point, creating a "diversity bulge" at middle elevations. There have been multiple hypotheses proposed for explaining the EDG, none of which accurately describe the phenomenon in full.
A similar pattern, known as the latitudinal diversity gradient, describes an increase in biodiversity from the poles to the equator. While the EDG generally follows the LDG (i.e., high elevations in tropical regions have greater biodiversity than high elevations in temperate regions), the LDG does not account for elevational changes.
The first recorded observation of the elevational diversity gradient was by Carl Linnaeus in his treatise On the growth of the habitable earth. In this document, Linnaeus based his predictions on flood geology, assuming most of the world was at one point inundated, leaving only the highest elevations available for terrestrial life. Since, by Linnaeus’ hypothesis, all life was concentrated at high elevations, a higher species diversity would be observed there even as life re-populated lower elevations.
In 1799, Alexander von Humboldt and Aimé Bonpland described elevational changes along the Andean slopes, noting how climatic changes impacted plant and animal communities. These observations contributed to Leslie R. Holdridge's "life zone concept" (1947). Climatic variables shaping life zones include mean potential temperature, total annual precipitation, and the ratio of mean annual evapotranspiration to mean annual precipitation. These variables, most notably precipitation and temperature, vary along an elevational gradient, resulting in the distribution of different ecosystems. [1]
Much of the current literature correlates elevational diversity to gradients in single climatic or biotic variables including "rainfall, temperature, productivity, competition, resource abundance, habitat complexity, or habitat diversity". [2]
A pattern in species richness is also observed as one moves along an elevational gradient; generally, species richness is thought to decline with increasing elevation. Whether this decline is monotonic or if it assumes different shapes based on the taxa or region being studied is still a topic of debate. In a review of previous studies looking at elevational diversity gradients, Rahbek noted the importance of other factors contributing to the shape of a gradient, distinguishing elevational patterns from those described by the latitudinal diversity gradient. [3]
For certain taxa and regions, there is a mid elevational peak in species richness. This pattern has received empirical support for small mammals, [4] spiders, [5] ants [6] [7] and plants. [8] [9] Alternatively, microbes have been shown to exhibit not only monotonically decreasing diversity when moving from low to high elevations, [10] but also increasing, hump-shaped, and U-shaped elevational patterns in diversity. [11] One explanation for a mid elevational peak includes mid elevational condensation zones. [3] Under the assumption that natural boundaries can limit species distributions in varying degrees (for example, a mountain can present absolute elevational limits), Colwell and Lees explained the mid domain effect with geometric theory. [12] In the context of a mountain, geometric boundary constraints will naturally result in the increasing overlap of species ranges nearing the midpoint of the mountain. Using vascular epiphytes in Costa Rica, Cardelus et al. (2008) noted that the elevational species richness pattern observed was substantially due to the mid domain effect; there was a bulge in epiphyte species richness at 1000m (The cloud forest).
This elevational pattern, however, was less consistent for species with small ranges, suggesting that environmental factors may be more clearly accounted for when constraints on domain boundary are loosened. In cases where geometric models fail to explain the location of the midpoint or the trend in species richness, other explanations need to be explored. An example of this can be seen with microbes, which have been shown to exhibit monotonically decreasing diversity when moving from low to high elevations. [10]
The mountain-mass effect (also known as the Massenerhebung effect or mass-elevation effect) was proposed in 1904 by A. de Quarvain. This phenomenon recognizes the correlation between mountain mass and the occurrence of physiognomically similar vegetation types; similarity in vegetation type is observed at higher elevations on large mountain masses. [13] Furthermore, under a climatically driven mountain–mass effect, there is a “positive linear trend observed in the elevation of highest diversity with mountain height”. [2] This trend is most evident on isolated mountain peaks.
Another hypothesis that is cited to explain the upper limit of the elevational diversity gradient is the area hypothesis, which states that larger areas are able to support more species. As elevation increases, total area decreases; thus, there are more species present at middle elevations than high elevations.
However, this hypothesis does not account for differences between lowland areas and middle elevations, as lowlands tend to have more area than middle elevations and thus would be expected by this hypothesis to have higher species diversity, an assertion that runs counter to the EDG. Additionally, the area hypothesis does not take climatic conditions or resource availability into account.
This hypothesis states that diversity increases with increasing rainfall, [14] however the correlation between rainfall and plant diversity varies from region to region. The consistency of rainfall seems to correlate more with species richness than total annual rainfall. Species diversity appears to level off when annual rainfall reaches about 4,000mm, however this could be due to sampling limitations. Rainfall and soil richness affect productivity trends which are also believed to affect diversity. [15] A mid elevation peak is usually seen in mean annual rainfall. [14]
The resource diversity hypothesis states an increase in diversity can be seen when an increase in the diversity of available resources such as soil and food is present. [15] [16] In this hypothesis diversity increases in an area of higher resource diversity even when resource abundance is constant. However resource diversity, especially pertaining to food, could be a result of other influences, such as rainfall and productivity; as such, it may be inappropriate to consider the resource diversity hypothesis as a mechanism acting independently of other factors influencing diversity gradients. [17]
The productivity hypothesis states that diversity increases with increased productivity. [14] There is some contradiction to this as other research suggests that after a certain point increasing productivity actually correlates with a decrease in diversity. [18]
It is generally thought that productivity decreases with an increase in elevation, however there is some research that shows a peak in productivity at mid elevation which may be related to a peak in rainfall within the same area. [14]
The temperature hypothesis correlates increasing temperature with an increase in species diversity, mainly because of temperature's effect on productivity. [3] However increasing temperatures due to climate change have begun to be linked to the spread of chytrid among frogs in the Tropics. Another concern is that higher-elevation species will become extinct as their ranges become more and more restricted with an increase in temperature. [19] This hypothesis is an important factor in considering the effects of global warming.
There are conflicting views on the effect of competition on species diversity. Some hold the view that an increase in interspecies competition leads to local extinctions and a decrease in diversity. [14] Others view competition as a means of species specialization and niche partitioning, resulting in increase diversity. [20]
In other studies the competition between plant species at high elevations has been shown to facilitate the movement of plant species into high stress environments. The competition between plant species leads to hardier species spreading into the high stress environment. These founder species then provide shelter and facilitate the movement of less hardy species into the area. [10] [21] This may result in the movement of plant species up a mountainside.
Current research illuminates a variety of mechanisms than can be used to explain elevational diversity gradients. No one factor can be used to explain the presence of diversity gradients within and among taxa; in many cases, we must consider more than one hypothesis or mechanism to fully understand a pattern in elevational diversity. The emerging macroecological experiments along environmental gradients (for example, mountain elevation gradients) are an important tool in ecological research because they allow for the disentangling the effects of individual environmental drivers on biodiversity, the independent effects of which are not easily separated due to their covariance in nature. [22] For instance, microcosm experimental setups in subtropical and subarctic regions (China and Norway, respectively) showed clear segregation of bacterial species along temperature gradients, and interactive effects of temperature and nutrients on biodiversity along mountain elevation gradients. [22] A more expansive research program for mountain biogeography may be extremely beneficial for conservation biologists seeking to understand factors driving biodiversity in known hot spots. [23] Further research and reviews are also needed to address contradictions in the scientific literature, and to identify the extent of interactions between current explanations and hypotheses.
A biome is a biogeographical unit consisting of a biological community that has formed in response to the physical environment in which they are found and a shared regional climate. Biomes may span more than one continent. Biome is a broader term than habitat and can comprise a variety of habitats.
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
Bergmann's rule is an ecogeographical rule that states that within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, while populations and species of smaller size are found in warmer regions. Bergmann's rule only describes the overall size of the animals, but does not include body parts like Allen's rule does.
An environmental gradient, or climate gradient, is a change in abiotic (non-living) factors through space. Environmental gradients can be related to factors such as altitude, depth, temperature, soil humidity and precipitation. Often times, a multitude of biotic (living) factors are closely related to these gradients; as a result of a change in an environmental gradient, factors such as species abundance, population density, morphology, primary productivity, predation, and local adaptation may be impacted.
The diversity of species and genes in ecological communities affects the functioning of these communities. These ecological effects of biodiversity in turn are affected by both climate change through enhanced greenhouse gases, aerosols and loss of land cover, and biological diversity, causing a rapid loss of biodiversity and extinctions of species and local populations. The current rate of extinction is sometimes considered a mass extinction, with current species extinction rates on the order of 100 to 1000 times as high as in the past.
Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.
Species richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness.
The Biological Dynamics of Forest Fragments Project is a large-scale ecological experiment looking at the effects of habitat fragmentation on tropical rainforest. The experiment which was established in 1979 is located near Manaus in the Brazilian Amazon rainforest. The project is jointly managed by the Amazon Biodiversity Center and the Brazilian Institute for Research in the Amazon (INPA).
Rapoport's rule is an ecogeographical rule that states that latitudinal ranges of plants and animals are generally smaller at lower latitudes than at higher latitudes.
In biology, a refugium is a location which supports an isolated or relict population of a once more widespread species. This isolation (allopatry) can be due to climatic changes, geography, or human activities such as deforestation and overhunting.
Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.
Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.
The hypothesis of effective evolutionary time attempts to explain gradients, in particular latitudinal gradients, in species diversity. It was originally named "time hypothesis".
In ecology, beta diversity is the ratio between regional and local species diversity. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and gamma diversity (γ-diversity). The idea was that the total species diversity in a landscape (γ) is determined by two different things, the mean species diversity at the local level (α) and the differentiation among local sites (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".
Altitudinal zonation in mountainous regions describes the natural layering of ecosystems that occurs at distinct elevations due to varying environmental conditions. Temperature, humidity, soil composition, and solar radiation are important factors in determining altitudinal zones, which consequently support different vegetation and animal species. Altitudinal zonation was first hypothesized by geographer Alexander von Humboldt who noticed that temperature drops with increasing elevation. Zonation also occurs in intertidal and marine environments, as well as on shorelines and in wetlands. Scientist C. Hart Merriam observed that changes in vegetation and animals in altitudinal zones map onto changes expected with increased latitude in his concept of life zones. Today, altitudinal zonation represents a core concept in mountain research.
Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn. The tropical climate experiences hot, humid weather and rainfall year-round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate.
The history of life on Earth is closely associated with environmental change on multiple spatial and temporal scales. Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Climate change is any significant long term change in the expected pattern, whether due to natural variability or as a result of human activity. Predicting the effects that climate change will have on plant biodiversity can be achieved using various models, however bioclimatic models are most commonly used.
Clutch size refers to the number of eggs laid in a single brood by a nesting pair of birds. The numbers laid by a particular species in a given location are usually well defined by evolutionary trade-offs with many factors involved, including resource availability and energetic constraints. Several patterns of variation have been noted and the relationship between latitude and clutch size has been a topic of interest in avian reproduction and evolution. David Lack and R.E. Moreau were among the first to investigate the effect of latitude on the number of eggs per nest. Since Lack's first paper in the mid-1940s there has been extensive research on the pattern of increasing clutch size with increasing latitude. The proximate and ultimate causes for this pattern have been a subject of intense debate involving the development of ideas on group, individual, and gene-centric views of selection.
Altitudinal migration is a short-distance animal migration from lower altitudes to higher altitudes and back. Altitudinal migrants change their elevation with the seasons making this form of animal migration seasonal. Altitudinal migration can be most commonly observed in species inhabiting temperate or tropical ecosystems. This behavior is commonly seen among avian species but can also be observed within other vertebrates and some invertebrates. It is commonly thought to happen in response to climate and food availability changes as well as increasingly due to anthropogenic influence. These migrations can occur both during reproductive and non-reproductive seasons.
Nurse plants are plants that serve the ecological role of helping seedlings establish themselves and protecting young plants from harsh conditions. This effect is particularly well studied among plant communities in xeric environments.