Embryo rescue

Last updated

Embryo rescue is one of the earliest and successful forms of in-vitro culture techniques that is used to assist in the development of plant embryos that might not survive to become viable plants. [1] Embryo rescue plays an important role in modern plant breeding, allowing the development of many interspecific and intergeneric food and ornamental plant crop hybrids. This technique nurtures the immature or weak embryo, thus allowing it the chance to survive. Plant embryos are multicellular structures that have the potential to develop into a new plant. The most widely used embryo rescue procedure is referred to as embryo culture, and involves excising plant embryos and placing them onto media culture. [2] Embryo rescue is most often used to create interspecific and intergeneric crosses that would normally produce seeds which are aborted. Interspecific incompatibility in plants can occur for many reasons, but most often embryo abortion occurs [3] In plant breeding, wide hybridization crosses can result in small shrunken seeds which indicate that fertilization has occurred, however the seed fails to develop. Many times, remote hybridizations will fail to undergo normal sexual reproduction, thus embryo rescue can assist in circumventing this problem. [4]

Contents

History

Embryo rescue was first documented in the 18th century when Charles Bonnet excised Phaseolus and Fagopyrum embryos and was successful in it, planted them in soil and the cross resulted in dwarf plants. [5] Soon after this, scientists began placing the embryos in various nutrient media. During the period of 1890 to 1904, systems for embryo rescue became systematic by applying nutrient solutions that contained salts and sugars and applying aseptic technique. [6] The first successful in vitro embryo culture was performed by Hanning in 1904, he however described problems with precocious embryos that resulted in small, weak, and often inviable plantlets. [7]

Applications

Techniques

Depending on the organ cultured, it may be referred to as either embryo, ovule, or ovary culture. Ovule culture or in vitro embryo culture is a modified technique of embryo rescue whereby embryos are cultured while still inside their ovules to prevent damaging them during the excision process. [8] Ovary or pod culture, on the other hand employs the use of an entire ovary into culture. It becomes necessary to excise the entire small embryo to prevent early embryo abortion. However, it is technically difficult to isolate the tiny intact embryos, so often ovaries with young embryos, or entire fertilized ovules will be used. [9]

Factors to consider

Embryos are manually excised and placed immediately onto a culture medium that provides the proper nutrients to support survival and growth (Miyajima 2006). While the disinfestation and explant excision processes differ for these three techniques, many of the factors that contribute to the successful recovery of viable plants are similar. The main factors that influence success are; the time of culture, the composition of the medium, and temperature and light. Timing mainly refers to the maturation stage of the embryo before excision. The optimal time especially for the rescue of embryos involving incompatible crosses would be just prior to embryo abortion. Nevertheless, due to difficulties involved with the rearing of young embryos compared to those that have reached the autotrophic phase of development, embryos are normally allowed to develop in vivo as long as possible. While in general, two main types of basal media are the most commonly used for embryo rescue studies, i.e. Murashige and Skoog medium (MS) [10] [ failed verification ] and Gamborg’s B-5 [11] [ failed verification ] media (Bridgen, 1994), the composition of the medium will vary in terms of the concentrations of media supplements required. This will generally depend on the stage of development of the embryo. For instance, young embryos would require a complex medium with high sucrose concentrations, while more mature embryos can usually develop on a simple medium with low levels of sucrose. The temperature and light requirement is generally species specific and thus its usually regulated to be the within the same temperature requirement as that of its parent with embryos of cool-season crops requiring lower temperatures than those of warm-season crops.

Both plant and animal cells, tissues and organ culture is possible in artificial nutrient medium in controlled laboratory conditions. Many desired products can be obtained through tissue culture like pharmaceutical drugs, vaccines, and monoclonal antibodies.

See also

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Embryo</span> Multicellular diploid eukaryote in its earliest stage of development

An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm cell. The resulting fusion of these two cells produces a single-celled zygote that undergoes many cell divisions that produce cells known as blastomeres. The blastomeres are arranged as a solid ball that when reaching a certain size, called a morula, takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals.

<span class="mw-page-title-main">Seed</span> Embryonic plant enclosed in a protective outer covering

In botany, a seed is a plant embryo and food reserve enclosed in a protective outer covering called a seed coat (testa). More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Egg cell</span> Female reproductive cell in most anisogamous organisms

The egg cell or ovum is the female reproductive cell, or gamete, in most anisogamous organisms. The term is used when the female gamete is not capable of movement (non-motile). If the male gamete (sperm) is capable of movement, the type of sexual reproduction is also classified as oogamous. A nonmotile female gamete formed in the oogonium of some algae, fungi, oomycetes, or bryophytes is an oosphere. When fertilized, the oosphere becomes the oospore.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte— is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule.

<span class="mw-page-title-main">Endosperm</span> Starchy tissue inside cereals and alike

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread, while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as orchids, lack endosperm in their seeds.

<span class="mw-page-title-main">Callus (cell biology)</span> Growing mass of unorganized plant parenchyma cells

Plant callus is a growing mass of unorganized plant parenchyma cells. In living plants, callus cells are those cells that cover a plant wound. In biological research and biotechnology callus formation is induced from plant tissue samples (explants) after surface sterilization and plating onto tissue culture medium in vitro. The culture medium is supplemented with plant growth regulators, such as auxin, cytokinin, and gibberellin, to initiate callus formation or somatic embryogenesis. Callus initiation has been described for all major groups of land plants.

Plant embryonic development, also plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Micropropagation</span> Practice in plant tissue culture

Micropropagation or tissue culture is the practice of rapidly multiplying plant stock material to produce many progeny plants, using modern plant tissue culture methods.

<span class="mw-page-title-main">Gynoecium</span> Female organs of a flower

Gynoecium is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl of a flower; it consists of pistils and is typically surrounded by the pollen-producing reproductive organs, the stamens, collectively called the androecium. The gynoecium is often referred to as the "female" portion of the flower, although rather than directly producing female gametes, the gynoecium produces megaspores, each of which develops into a female gametophyte which then produces egg cells.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryo sacs.

<span class="mw-page-title-main">Placentation</span> Formation and structure of the placenta

Placentation refers to the formation, type and structure, or arrangement of the placenta. The function of placentation is to transfer nutrients, respiratory gases, and water from maternal tissue to a growing embryo, and in some instances to remove waste from the embryo. Placentation is best known in live-bearing mammals (theria), but also occurs in some fish, reptiles, amphibians, a diversity of invertebrates, and flowering plants. In vertebrates, placentas have evolved more than 100 times independently, with the majority of these instances occurring in squamate reptiles.

A seedless fruit is a fruit developed to possess no mature seeds. Since eating seedless fruits is generally easier and more convenient, they are considered commercially valuable.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

<span class="mw-page-title-main">Nucellar embryony</span>

Nucellar embryony is a form of seed reproduction that occurs in certain plant species, including many citrus varieties. Nucellar embryony is a type of apomixis, where eventually nucellar embryos from the nucellus tissue of the ovule are formed, independent of meiosis and sexual reproduction. During the development of seeds in plants that possess this genetic trait, the nucellus tissue which surrounds the megagametophyte can produce nucellar cells, also termed initial cells. These additional embryos (polyembryony) are genetically identical to the parent plant, rendering them as clones. By contrast, zygotic seedlings are sexually produced and inherit genetic material from both parents. Most angiosperms reproduce sexually through double fertilization. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule. The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding.

<span class="mw-page-title-main">Plant tissue culture</span> Growing cells under lab conditions

Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues, or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used to produce clones of a plant in a method known as micropropagation. Different techniques in plant tissue culture may offer certain advantages over traditional methods of propagation, including:

<span class="mw-page-title-main">Plant breeding</span> Humans changing traits, ornamental/crops

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.

Selective embryo abortion, is a form of non-random, premature termination of embryonic development in plants. Selective embryo abortion assumes that embryo termination depends on the genetic quality of seeds developing within an ovary, and predicts that successfully matured seeds will be of greater fitness than aborted seeds. Consequently, selective embryo abortion has the potential to act as a unique stage of natural selection, influencing the evolution of plant populations and species. This concept was described by botanist John T. Buchholz in 1922 under his framework of developmental selection, which referred to selective embryo abortion as “interovular selection.”

References

  1. Sage, T.L.; Strumas, F.; Cole, W.W.; Barret,S (2010). "Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae)". Euphytica. 174: 73–82. doi:10.1007/s10681-010-0135-x. S2CID   7837522.
  2. Miyajuma, D. (2006). "Ovules that failed to form seeds in zinnia (Zinnia violacec Cav)". Sci Hortic. 107 (2): 176–182. doi:10.1016/j.scienta.2005.06.014.
  3. Reed, Sandra (2005). Robert N. Trigiano; Dennis J. Gray (eds.). Plant Development and Biotechnology (PDF). CRC Press. pp. 235–239. ISBN   0-8493-1614-6. Archived from the original (PDF) on 2012-03-12. Retrieved 2011-04-18.
  4. Bridgen, Mark P. (1994). "A Review of Plant Embryo Culture". HortScience. 29 (11): 1243–1246. doi: 10.21273/hortsci.29.11.1243 .
  5. Sharma, D.R.; Daur, R.; Kumar K. (1996). "Embryo rescue in plants-a review". Euphytica. 89 (3): 325–337. doi:10.1007/BF00022289. S2CID   206766831.
  6. Amanate-Bordeos, A.D.; Nelson, R.J.; Oliva, N.P.; Dalmacio, R.D.; Leung, H.; Sitch, L.A. (1992). "Transfer of blast and bacterial blight resistance from the tetrapliod wild rice Oryza minuta to the cultivated rice, O. sativa". Theor. Appl. Genet. 84 (3–4): 345–354. doi:10.1007/bf00229493. PMID   24203194. S2CID   6451011.
  7. Mehetre, S. S; Aher, A. R. (2004). "Embryo rescue: A tool to overcome incompatible interspecific hybridization in Gossypium Linn. --A review". Indian Journal of Biotechnology. 3: 29–36.
  8. Cisneros, Aroldo; Tel-Zur (2010). "Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae)". Euphytica. 174: 73–82. doi:10.1007/s10681-010-0135-x. S2CID   7837522.
  9. Ikeda, N.; Niimi, Y. Han D. (2003). "Production of seedling from ovules excised at the zygote stage in Lilium spp". Plant Cell Tissue Organ Cult. 73 (2): 159–166. doi:10.1023/A:1022818413617. S2CID   7305410.
  10. Murashige, T; Skoog, F. (1962). "A revised medium for rapid growth and bioassays with tobacco tissue cultures". Physiol. Plant. 15 (3): 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x. S2CID   84645704.
  11. Gamborg, O.L; Miller, R.A.; Ojima, K. (1968). "Nutrient requirements of suspension cultures of soybean root cells". Exp. Cell Res. 50 (1): 151–158 [157]. doi:10.1016/0014-4827(68)90403-5. PMID   5650857.