EmojiGrid

Last updated

The EmojiGrid is an affective self-report tool consisting of a rectangular grid that is labelled with smileys. It is trademark of Kikkoman. The facial expressions of the emoji labels vary from disliking via neutral to liking along the x-axis, and gradually increase in intensity along the y-axis. To report their affective appraisal of a given stimulus, users mark the location inside the grid that best represents their impression. The EmojiGrid can either be used as a paper or computer-based response tool. The images needed to implement the EmojiGrid are freely available from the OSF repository.

Contents

The EmojiGrid: an emoji-labelled Valence (horizontal axis) x Arousal (vertical axis) self-report tool. EmojiGrid.jpg
The EmojiGrid: an emoji-labelled Valence (horizontal axis) × Arousal (vertical axis) self-report tool.

Applications

The EmojiGrid was inspired by Russell's Affect Grid [1] and was originally developed and validated for the affective appraisal of food stimuli, [2] since conventional affective self-report tools (e.g., the Self-Assessment Manikin) are frequently misunderstood in that context. [2] [3] It has since been used and validated for the affective appraisal of a wide range of affective stimuli such as images, [4] [5] audio and video clips, [6] 360 VR videos, [7] touch events, [8] food, [9] and odors. [10] [11] [12] It has also been used for the affective analysis of architectural spaces [13] to assess affective experience of trail racing, [14] and to assess the emotional face evaluation capability of people with early dementia. [15] Since it is intuitive and language independent, the EmojiGrid is also suitable for cross-cultural research. [3] [16]

Implementation

In a computer-based response paradigm, only the image area inside the horizontal and vertical grid borders should be responsive (clickable), so that users can report their affective response by pointing and/or clicking inside the grid.  In practice, this may be achieved by superimposing (1) a clickable image of the unlabeled grid area on top of (2) a larger image showing the grid area together with the emoji labels. The images needed to implement the EmojiGrid are freely available from the OSF repository. An implementation of the EmojiGrid rating task in the Gorilla experiment builder is freely available from the Gorilla Open Materials platform.

See also

Further reading

References

  1. Russell, James A.; Weiss, Anna; Mendelsohn, Gerald A. (1989). "Affect Grid: A single-item scale of pleasure and arousal" . Journal of Personality and Social Psychology. 57 (3): 493–502. doi:10.1037/0022-3514.57.3.493. ISSN   1939-1315. S2CID   4837807.
  2. 1 2 Toet, Alexander; Kaneko, Daisuke; Ushiama, Shota; Hoving, Sofie; de Kruijf, Inge; Brouwer, Anne-Marie; Kallen, Victor; van Erp, Jan B. F. (2018). "EmojiGrid: A 2D Pictorial Scale for the Assessment of Food Elicited Emotions". Frontiers in Psychology. 9 2396. doi: 10.3389/fpsyg.2018.02396 . ISSN   1664-1078. PMC   6279862 . PMID   30546339.
  3. 1 2 Kaneko, Daisuke; Toet, Alexander; Ushiama, Shota; Brouwer, Anne-Marie; Kallen, Victor; van Erp, Jan B.F. (2019). "EmojiGrid: A 2D pictorial scale for cross-cultural emotion assessment of negatively and positively valenced food". Food Research International. 115: 541–551. doi:10.1016/j.foodres.2018.09.049. PMID   30599977. S2CID   58653600.
  4. Toet; van Erp (2019). "The EmojiGrid as a Tool to Assess Experienced and Perceived Emotions". Psych. 1 (1): 469–481. doi: 10.3390/psych1010036 . ISSN   2624-8611.
  5. Brouwer, Anne-Marie; van Beers, Jasper J.; Sabu, Priya; Stuldreher, Ivo V.; Zech, Hilmar G.; Kaneko, Daisuke (2021-06-22). "Measuring Implicit Approach–Avoidance Tendencies towards Food Using a Mobile Phone outside the Lab". Foods. 10 (7): 1440. doi: 10.3390/foods10071440 . ISSN   2304-8158. PMC   8305314 . PMID   34206278.
  6. Toet, Alexander; van Erp, Jan B. F. (2020). "Affective rating of audio and video clips using the EmojiGrid". F1000Research. 9: 970. doi: 10.12688/f1000research.25088.1 . ISSN   2046-1402. PMC   8080979 . PMID   33968373.
  7. Toet, Alexander; Heijn, Fabienne; Brouwer, Anne-Marie; Mioch, Tina; van Erp, Jan B. F. (2019). "The EmojiGrid as an Immersive Self-report Tool for the Affective Assessment of 360 VR Videos". In Bourdot, Patrick; Interrante, Victoria; Nedel, Luciana; Magnenat-Thalmann, Nadia (eds.). Virtual Reality and Augmented Reality. Lecture Notes in Computer Science. Vol. 11883. Cham: Springer International Publishing. pp. 330–335. doi:10.1007/978-3-030-31908-3_24. ISBN   978-3-030-31907-6. S2CID   203847617 . Retrieved 2021-11-28.
  8. Toet, Alexander; van Erp, Jan B. F. (2020). Scilingo, Enzo Pasquale (ed.). "The EmojiGrid as a rating tool for the affective appraisal of touch". PLOS ONE. 15 (9): e0237873. Bibcode:2020PLoSO..1537873T. doi: 10.1371/journal.pone.0237873 . ISSN   1932-6203. PMC   7467219 . PMID   32877409.
  9. de Wijk, Rene A.; Ushiama, Shota; Ummels, Meeke J.; Zimmerman, Patrick H.; Kaneko, Daisuke; Vingerhoeds, Monique H. (2021-05-13). "Effect of Branding and Familiarity of Soy Sauces on Valence and Arousal as Determined by Facial Expressions, Physiological Measures, Emojis, and Ratings". Frontiers in Neuroergonomics. 2 651682. doi: 10.3389/fnrgo.2021.651682 . ISSN   2673-6195. PMC   10790916 . PMID   38235247.
  10. Liu, Yingxuan; Toet, Alexander; Krone, Tanja; van Stokkum, Robin; Eijsman, Sophia; van Erp, Jan B. F. (2020). Greco, Alberto (ed.). "A network model of affective odor perception". PLOS ONE. 15 (7): e0236468. Bibcode:2020PLoSO..1536468L. doi: 10.1371/journal.pone.0236468 . ISSN   1932-6203. PMC   7392242 . PMID   32730278.
  11. Toet, Alexander; Eijsman, Sophia; Liu, Yingxuan; Donker, Stella; Kaneko, Daisuke; Brouwer, Anne-Marie; van Erp, Jan B.F. (2020). "The Relation Between Valence and Arousal in Subjective Odor Experience". Chemosensory Perception. 13 (2): 141–151. doi:10.1007/s12078-019-09275-7. ISSN   1936-5802. S2CID   208302660.
  12. Van der Burg, Erik; Toet, Alexander; Brouwer, Anne-Marie; van Erp, Jan B. F. (2021). "Sequential Effects in Odor Perception". Chemosensory Perception. 15: 19–25. doi:10.1007/s12078-021-09290-7. ISSN   1936-5802. S2CID   235650532.
  13. Sanatani, R.P. (2020). User-specific predictive affective modeling for enclosure analysis and design assistance", Imaginable Futures: Design Thinking, and the Scientific Method. 54th International Conference of the Architectural Science Association 2020. Auckland, New Zealand: Architectural Science Association (ANZAScA). pp. 1341–1350.
  14. Aitken, John A.; Kaplan, Seth A.; Pagan, Olivia; Wong, Carol M.; Sikorski, Eric; Helton, William (2021-10-02). "Affective Forecasts for the Experience Itself: An Investigation of the Impact Bias during an Affective Experience" . Current Psychology. 42 (13): 10581–10587. doi:10.1007/s12144-021-02337-8. ISSN   1046-1310. S2CID   244197232.
  15. Rutkowski, Tomasz M.; Abe, Masato S.; Koculak, Marcin; Otake-Matsuura, Mihoko (July 2020). "Classifying Mild Cognitive Impairment from Behavioral Responses in Emotional Arousal and Valence Evaluation Task – AI Approach for Early Dementia Biomarker in Aging Societies". 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Vol. 2020. Montreal, QC, Canada: IEEE. pp. 5537–5543. doi:10.1109/EMBC44109.2020.9175805. ISBN   978-1-7281-1990-8. PMID   33019233. S2CID   221385462.
  16. Kaneko, Daisuke; Stuldreher, Ivo; Reuten, Anne J. C.; Toet, Alexander; van Erp, Jan B. F.; Brouwer, Anne-Marie (2021). "Comparing Explicit and Implicit Measures for Assessing Cross-Cultural Food Experience". Frontiers in Neuroergonomics. 2 646280. doi: 10.3389/fnrgo.2021.646280 . ISSN   2673-6195. PMC   10790875 . PMID   38235219.