Endogenous cardiac stem cell

Last updated

Endogenous cardiac stem cells (eCSCs) are tissue-specific stem progenitor cells harboured within the adult mammalian heart. It has to be noted that a scientific-misconduct scandal, involving Harvard professor Piero Anversa, might indicate that the heart stem cell concept be broken. [1] Therefore, the following article should be read with caution, as it builds on Anversa's results.

Endogenous cardiac stem cells were first discovered in 2003 by Bernardo Nadal-Ginard, Piero Anversa and colleagues [2] [3] in the adult rat heart and since then have been identified and isolated from mouse, dog, porcine and human hearts. [4] [5]

The adult heart was previously thought to be a post mitotic organ without any regenerative capability. The identification of eCSCs has provided an explanation for the hitherto unexplained existence of a subpopulation of immature cycling myocytes in the adult myocardium. Indeed, recent evidence from a genetic fate-mapping study established that stem cells replenish adult mammalian cardiomyocytes lost by cardiac wear and tear and injury throughout the adult life. [6] Moreover, it is now accepted that myocyte death and myocyte renewal are the two sides of the proverbial coin of cardiac homeostasis in which the eCSCs play a central role. [7] These findings produced a paradigm shift in cardiac biology and opened new opportunities and approaches for future treatment of cardiac diseases by placing the heart squarely amongst other organs with regenerative potential such as the liver, skin, muscle, CNS. However, they have not changed the well-established fact that the working myocardium is mainly constituted of terminally differentiated contractile myocytes. This fact does not exclude, but is it fully compatible with the heart being endowed with a robust intrinsic regenerative capacity which resides in the presence of the eCSCs throughout the individual lifespan.

Briefly, eCSCs have been first identified through the expression of c-kit, the receptor of the stem cell factor and the absence of common hematopoietic markers, like CD45. Afterwards, different membrane markers (Sca-1, Abcg-2, Flk-1) and transcription factors (Isl-1, Nkx2.5, GATA4) have been employed to identify and characterize these cells in the embryonic and adult life. [8] eCSCs are clonogenic, self-renewing and multipotent in vitro and in vivo, [9] capable of generating the 3 major cell types of the myocardium: myocytes, smooth muscle and endothelial vascular cells. [10] They express several markers of stemness (i.e. Oct3/4, Bmi-1, Nanog) and have significant regenerative potential in vivo. [11] When cloned in suspension they form cardiospheres, [12] which when cultured in a myogenic differentiation medium, attach and differentiate into beating cardiomyocytes.

In 2012, it was proposed that Isl-1 is not a marker for endogenous cardiac stem cells. [13] That same year, a different group demonstrated that Isl-1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest. [14] It has also been reported that Flk-1 is not a specific marker for endogenous and mouse ESC-derived Isl1+ CPCs. While some eCSC discoveries have been brought into question, there has been success with other membrane markers. For instance, it was demonstrated that the combination of Flt1+/Flt4+ membrane markers identifies an Isl1+/Nkx2.5+ cell population in the developing heart. It was also shown that endogenous Flt1+/Flt4+ cells could be expanded in vitro and displayed trilineage differentiation potential. Flt1+/Flt4+ CPCs derived from iPSCs were shown to engraft into the adult myocardium and robustly differentiate into cardiomyocytes with phenotypic and electrophysiologic characteristics of adult cardiomyocytes. [15]

With the myocardium now recognized as a tissue with limited regenerating potential, [16] harbouring eCSCs that can be isolated and amplified in vitro [17] for regenerative protocols of cell transplantation or stimulated to replicate and differentiate in situ in response to growth factors, [18] it has become reasonable to exploit this endogenous regenerative potential to replace lost/damaged cardiac muscle with autologous functional myocardium.

Related Research Articles

<span class="mw-page-title-main">Cardiac muscle</span> Muscular tissue of heart in vertebrates

Cardiac muscle is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart. The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall and the inner layer, with blood supplied via the coronary circulation. It is composed of individual cardiac muscle cells joined by intercalated discs, and encased by collagen fibers and other substances that form the extracellular matrix.

<span class="mw-page-title-main">Endocardium</span> Innermost layer of tissue lining the chambers of the heart

The endocardium is the innermost layer of tissue that lines the chambers of the heart. Its cells are embryologically and biologically similar to the endothelial cells that line blood vessels. The endocardium also provides protection to the valves and heart chambers.

<span class="mw-page-title-main">T-tubule</span> Extensions of cell membranes

T-tubules are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells. With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.

Cardiomyoplasty is a surgical procedure in which healthy muscle from another part of the body is wrapped around the heart to provide support for the failing heart. Most often the latissimus dorsi muscle is used for this purpose. A special pacemaker is implanted to make the skeletal muscle contract. If cardiomyoplasty is successful and increased cardiac output is achieved, it usually acts as a bridging therapy, giving time for damaged myocardium to be treated in other ways, such as remodeling by cellular therapies.

<span class="mw-page-title-main">Mesoangioblast</span>

A mesoangioblast is a type of progenitor cell that is associated with vasculature walls. Mesoangioblasts exhibit many similarities to pericytes, which are found in the small vessels. Mesoangioblasts are multipotent stem cells with the potential to progress down the endothelial or mesodermal lineages. Mesoangioblasts express the critical marker of angiopoietic progenitors, KDR (FLK1). Because of these properties, mesoangioblasts are a precursor of skeletal, smooth, and cardiac muscle cells along with endothelial cells. Research has suggested their application for stem cell therapies for muscular dystrophy and cardiovascular disease.

A biological pacemaker is one or more types of cellular components that, when "implanted or injected into certain regions of the heart," produce specific electrical stimuli that mimic that of the body's natural pacemaker cells. Biological pacemakers are indicated for issues such as heart block, slow heart rate, and asynchronous heart ventricle contractions.

<span class="mw-page-title-main">MAPK14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.

<span class="mw-page-title-main">PRKCE</span> Protein-coding gene in the species Homo sapiens

Protein kinase C epsilon type (PKCε) is an enzyme that in humans is encoded by the PRKCE gene. PKCε is an isoform of the large PKC family of protein kinases that play many roles in different tissues. In cardiac muscle cells, PKCε regulates muscle contraction through its actions at sarcomeric proteins, and PKCε modulates cardiac cell metabolism through its actions at mitochondria. PKCε is clinically significant in that it is a central player in cardioprotection against ischemic injury and in the development of cardiac hypertrophy.

<span class="mw-page-title-main">Cadherin-2</span> Protein-coding gene in the species Homo sapiens

Cadherin-2 also known as Neural cadherin (N-cadherin), is a protein that in humans is encoded by the CDH2 gene. CDH2 has also been designated as CD325 . Cadherin-2 is a transmembrane protein expressed in multiple tissues and functions to mediate cell–cell adhesion. In cardiac muscle, Cadherin-2 is an integral component in adherens junctions residing at intercalated discs, which function to mechanically and electrically couple adjacent cardiomyocytes. Alterations in expression and integrity of Cadherin-2 has been observed in various forms of disease, including human dilated cardiomyopathy. Variants in CDH2 have also been identified to cause a syndromic neurodevelopmental disorder.

<span class="mw-page-title-main">ISL1</span> Protein-coding gene in the species Homo sapiens

Insulin gene enhancer protein ISL-1 is a protein that in humans is encoded by the ISL1 gene.

<span class="mw-page-title-main">MYL7</span> Protein-coding gene in the species Homo sapiens

Atrial Light Chain-2 (ALC-2) also known as Myosin regulatory light chain 2, atrial isoform (MLC2a) is a protein that in humans is encoded by the MYL7 gene. ALC-2 expression is restricted to cardiac muscle atria in healthy individuals, where it functions to modulate cardiac development and contractility. In human diseases, including hypertrophic cardiomyopathy, dilated cardiomyopathy, ischemic cardiomyopathy and others, ALC-2 expression is altered.

In cardiology neocardiogenesis is the homeostatic regeneration, repair and renewal of sections of malfunctioning adult cardiovascular tissue. This includes a combination of cardiomyogenesis and angiogenesis.

Cellular cardiomyoplasty, or cell-based cardiac repair, is a new potential therapeutic modality in which progenitor cells are used to repair regions of damaged or necrotic myocardium. The ability of transplanted progenitor cells to improve function within the failing heart has been shown in experimental animal models and in some human clinical trials. In November 2011, a large group of collaborators at Minneapolis Heart Institute Foundation at Abbott Northwestern found no significant difference in left ventricular ejection fraction (LVEF) or other markers, between a group of patients treated with cellular cardiomyoplasty and a group of control patients. In this study, all patients were post MI, post percutaneous coronary intervention (PCI) and that infusion of progenitor cells occurred 2–3 weeks after intervention. In a study that is currently underway, however, more positive results were being reported: In the SCIPIO trial, patients treated with autologous cardiac stem cells post MI have been reported to be showing statistically significant increases in LVEF and reduction in infarct size over the control group at four months after implant. Positive results at the one-year mark are even more pronounced. Yet the SCIPIO trial "was recently called into question". Harvard University is "now investigating the integrity of some of the data". The Lancet recently published a non-specific ‘Expression of concern’ about the paper. Subsequently, another preclinical study also raised doubts on the rationale behind using this special kind of cell, as it was found that the special cells only have a minimal ability in generating new cardiomyocytes. Some specialists therefore now raise concerns to continue.

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease, as well as treatment for the damage that occurs to the heart after MI. After MI, the myocardium suffers from reperfusion injury which leads to death of cardiomyocytes and detrimental remodelling of the heart, consequently reducing proper cardiac function. Transfection of cardiac myocytes with human HGF reduces ischemic reperfusion injury after MI. The benefits of HGF therapy include preventing improper remodelling of the heart and ameliorating heart dysfunction post-MI.

Human engineered cardiac tissues (hECTs) are derived by experimental manipulation of pluripotent stem cells, such as human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs) to differentiate into human cardiomyocytes. Interest in these bioengineered cardiac tissues has risen due to their potential use in cardiovascular research and clinical therapies. These tissues provide a unique in vitro model to study cardiac physiology with a species-specific advantage over cultured animal cells in experimental studies. hECTs also have therapeutic potential for in vivo regeneration of heart muscle. hECTs provide a valuable resource to reproduce the normal development of human heart tissue, understand the development of human cardiovascular disease (CVD), and may lead to engineered tissue-based therapies for CVD patients.

A bioartificial heart is an engineered heart that contains the extracellular structure of a decellularized heart and cellular components from a different source. Such hearts are of particular interest for therapy as well as research into heart disease. The first bioartificial hearts were created in 2008 using cadaveric rat hearts. In 2014, human-sized bioartificial pig hearts were constructed. Bioartificial hearts have not been developed yet for clinical use, although the recellularization of porcine hearts with human cells opens the door to xenotransplantation.

Regeneration in humans is the regrowth of lost tissues or organs in response to injury. This is in contrast to wound healing, or partial regeneration, which involves closing up the injury site with some gradation of scar tissue. Some tissues such as skin, the vas deferens, and large organs including the liver can regrow quite readily, while others have been thought to have little or no capacity for regeneration following an injury.

Annarosa Leri is a medical doctor and former associate professor at Harvard University. Along with former professor Piero Anversa, Leri was engaged in biomedical research at Brigham and Women’s Hospital in Boston, an affiliate of Harvard Medical School. Since at least 2003 Anversa and Leri had investigated the ability of the heart to regenerate damaged cells using cardiac stem cells.

<span class="mw-page-title-main">Milica Radisic</span> Serbian Canadian tissue engineer

Milica Radisic is a Serbian Canadian tissue engineer, academic and researcher. She is a professor at the University of Toronto’s Institute of Biomaterials and Biomedical Engineering, and the Department of Chemical Engineering and Applied Chemistry. She co-founded TARA Biosystems and is a senior scientist at the Toronto General Hospital Research Institute.

Cardiomyocyte proliferation refers to the ability of cardiac muscle cells to progress through the cell cycle and continue to divide. Traditionally, cardiomyocytes were believed to have little to no ability to proliferate and regenerate after birth. Although other types of cells, such as gastrointestinal epithelial cells, can proliferate and differentiate throughout life, cardiac tissue contains little intrinsic ability to proliferate, as adult human cells arrest in the cell cycle. However, a recent paradigm shift has occurred. Recent research has demonstrated that human cardiomyocytes do proliferate to a small extent for the first two decades of life. Also, cardiomyocyte proliferation and regeneration has been demonstrated to occur in various neonatal mammals in response to injury in the first week of life. Current research aims to further understand the biological mechanism underlying cardiomyocyte proliferation in hopes to turn this capability back on in adults in order to combat heart disease.

References

  1. "Call for 31 Anversa retractions by Harvard; heart stem cell concept broken?". 16 October 2018.
  2. Beltrami AP, Barlucchi L, Torella D, Limana F, Chimenti S, et al. (2003). "Adult cardiac stem cells are multipotent and support myocardial regeneration". Cell. 114 (6): 763–776. doi: 10.1016/s0092-8674(03)00687-1 . PMID   14505575. S2CID   15588806.
  3. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003). "Myocyte death, growth and regeneration in cardiac hypertrophy and failure". Circ. Res. 92 (2): 139–150. doi: 10.1161/01.res.0000053618.86362.df . PMID   12574141.
  4. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez, de Prado A, Vicinanza C, Purushothaman S, Galuppo V, Iaconetti C, Waring CD, Smith A, Torella M, Cuellas Ramon C, Gonzalo-Orden JM, Agosti V, Indolfi C, Galiñanes M, Fernandez-Vazquez F, Nadal-Ginard B (2011). "Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart". J Am Coll Cardiol. 58 (9): 977–86. doi: 10.1016/j.jacc.2011.05.013 . PMID   21723061.
  5. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B (2007). "Cardiovascular development: towards biomedical applicability: Resident cardiac stem cells". Cellular and Molecular Life Sciences. 64 (6): 661–673. doi:10.1007/s00018-007-6519-y. PMID   17380307.
  6. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee (August 2007). "Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury". Nat. Med. 13 (8): 970–4. doi:10.1038/nm1618. PMC   2754571 . PMID   17660827.
  7. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003). "Myocyte death, growth and regeneration in cardiac hypertrophy and failure". Circ. Res. 92 (2): 139–150. doi: 10.1161/01.res.0000053618.86362.df . PMID   12574141.
  8. Ellison GM, Galuppo V, Vincinanza C, Aquilla I, Leone A, Waring CD, Indolfi C, Torella D (2010). "Cardiac stem & progenitor cell identification: Different markers for the same cell?". Front Biosci. 2: 641–652. doi:10.2741/s91. PMID   20036974.
  9. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B (2007). "Cardiovascular development: towards biomedical applicability: Resident cardiac stem cells". Cellular and Molecular Life Sciences. 64 (6): 661–673. doi:10.1007/s00018-007-6519-y. PMID   17380307.
  10. Nadal-Ginard B, Anversa P, Kajstura J, Leri A (2005). "Cardiac stem cells and myocardial regeneration". Novartis Foundation Symposium. 265: 142–54. PMID   16050255.
  11. Beltrami AP, Barlucchi L, Torella D, Limana F, Chimenti S, et al. (2003). "Adult cardiac stem cells are multipotent and support myocardial regeneration". Cell. 114 (6): 763–776. doi: 10.1016/s0092-8674(03)00687-1 . PMID   14505575. S2CID   15588806.
  12. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, et al. (2004). "Isolation and expansion of adult cardiac stem cells from human and murine heart". Circulation Research. 95 (9): 911–921. doi: 10.1161/01.res.0000147315.71699.51 . PMID   15472116.
  13. Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Müller JC, Schrepfer S, Evans SM, Carrier L, Eschenhagen T (May 2012). "Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart". Circ. Res. 110 (10): 1303–10. doi:10.1161/CIRCRESAHA.111.259630. PMC   5559221 . PMID   22427341.
  14. Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA (March 2012). "Islet1 derivatives in the heart are of both neural crest and second heart field origin". Circ. Res. 110 (7): 922–6. doi:10.1161/CIRCRESAHA.112.266510. PMC   3355870 . PMID   22394517.
  15. Ali Nsair; Katja Schenke-Layland; Ben Van Handel; Denis Evseenko; Michael Kahn; Peng Zhao; Joseph Mendelis; Sanaz Heydarkhan; Obina Awaji; Miriam Vottler; Susanne Geist; Jennifer Chyu; Nuria Gago-Lopez; Gay M. Crooks; Kathrin Plath; Josh Goldhaber; Hanna K. A. Mikkola; W. Robb MacLellan (October 2012). "Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells". PLOS ONE. 7 (10): e45603. Bibcode:2012PLoSO...745603N. doi: 10.1371/journal.pone.0045603 . PMC   3467279 . PMID   23056209.
  16. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009). "Evidence for cardiomyocyte renewal in humans". Science. 324 (5923): 98–102. Bibcode:2009Sci...324...98B. doi:10.1126/science.1164680. PMC   2991140 . PMID   19342590.
  17. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B (2007). "Cardiovascular development: towards biomedical applicability: Resident cardiac stem cells". Cellular and Molecular Life Sciences. 64 (6): 661–673. doi:10.1007/s00018-007-6519-y. PMID   17380307.
  18. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez, de Prado A, Vicinanza C, Purushothaman S, Galuppo V, Iaconetti C, Waring CD, Smith A, Torella M, Cuellas Ramon C, Gonzalo-Orden JM, Agosti V, Indolfi C, Galiñanes M, Fernandez-Vazquez F, Nadal-Ginard B (2011). "Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart". J Am Coll Cardiol. 58 (9): 977–86. doi: 10.1016/j.jacc.2011.05.013 . PMID   21723061.