Energy efficiency gap

Last updated

Energy efficiency gap refers to the improvement potential of energy efficiency or the difference between the cost-minimizing level of energy efficiency and the level of energy efficiency actually realized. It has attracted considerable attention among energy policy analysts, because its existence suggests that society has forgone cost-effective investments in energy efficiency, even though they could significantly reduce energy consumption at low cost. This term was first "coined" by Eric Hirst and Marilyn Brown in a paper entitled "Closing the Efficiency Gap: Barriers to the Efficient Use of Energy" in 1990. [1]

Contents

Introduction

Energy efficiency refers to changes in equipment and behavior that result in increased energy services per unit of energy consumed, while behavioral changes that reduce energy use are often referred to as energy conservation. Energy intensity which measures energy consumption per Gross Domestic Product (GDP) is one indicator of energy efficiency.

Many people have attempted to measure the energy efficiency gap, and their approaches differ based on the definitions of the optimal level of energy use. A commonly used parameter originates from Hirst and Brown's paper; technically feasible and cost-effective energy efficiency measures that are not used. [1] Many other studies have used this definition, such as International Energy Agency (2007) and Koopmans and Velde. [2] [3]

Jaffe and Stavins (1994) identify five types of optimality and the corresponding definitions of the energy-efficiency gap: the economists' economic potential, the technologists’ economic potential, hypothetical potential, the narrow social optimum and the true social optimum. [4] In particular, economists' economic potential could be achieved by eliminating market failures in the energy efficiency technology market, while technologists' economic potential could be achieved by eliminating both market and non-market failures. Achieving the hypothetical potential would require the elimination of market failures in the whole energy market, for instance, having energy prices that reflect all externalities. The society can achieve the narrow social optimum by implementing all available cost-effective programs, and the true social optimum can be achieved if the environmental effects of energy generation and consumption is taken into consideration.

Barriers for energy efficiency gap

Energy efficiency gaps exist because market failures exist. It is important to identify and understand those barriers in order to achieve desirable government policy interventions. According to Hirst and Brown (1990), various barriers that prevent the society from successfully closing energy efficiency gap can be divided into two categories: structural barriers and behavioral barriers. [1] Structural barriers result from the actions of public and private organizations, and are usually beyond the control of the individual energy end user. Some examples are presented as following:

Distortion in fuel prices. The fuel prices that consumers pay do not reflect the social and environmental costs associated with fuel production, distribution and consumption. Consumers tend not to invest on energy efficiency technologies due to this distortion.

Uncertainty about future fuel prices. There have been great uncertainties with the prices for fuels, such as electricity and petroleum. More stringent environmental regulations and global warming concerns also increase the volatility of fuel prices. These uncertainties prevent consumers from making rational purchase decisions of new energy-using systems.

Limited access to capital. Consumers often face high up-front costs for energy-efficient systems. In addition, high discount rates are used to make tradeoffs between the initial capital investment and reduced operating costs, which also hinder the investments in energy-efficiency technologies.

Government fiscal and regulatory policies. Government policies tend to encourage energy consumption, rather than energy efficiency. For instance, government support has focused more on energy production, and the profit of electric utilities is a function of sales.

Codes and standards. The development of codes and standards often lag behind the development of technologies. It also takes a long time to adopt and modify standards, which becomes a barrier for energy efficiency technological innovation.

Supply infrastructure limitations. The deployment of energy efficiency technologies is highly restricted by factors such as geography, infrastructure and human resources.

Behavioral barriers are problems that characterize the end-user's decision-marking relating to energy consumption. Four examples are discussed below.

Attitudes toward energy efficiency. Public's awareness of and attitudes toward energy efficiency could greatly affect their energy-related purchase and consumption behaviors.

Perceived risk of energy-efficiency investments. Consumers and businesses can be very risk-averse in terms of investing in energy efficiency technologies. The uncertainties of fuel prices and high discount rate for operating costs have both made energy-efficiency investments even more "risky” for many decision makers.

Information gaps. There is often a lack of information on the performance of energy-efficient technologies. Consumers tend not to change their energy consumption behavior if little information is provided.

Misplaced incentives. The principal-agent problem and a lack of life-cycle thinking on costs and savings have imposed barriers for energy conservation.

Jaffe and Stavins (1994) categorize the barriers differently. They think that both market failures and non-market failures could account for the limited market success of the cost-effective energy-efficiency technologies. [4] One important source of market failure is imperfect information, for instance the public good attributes of information and information asymmetry. Non-market failure may include the heterogeneity and inertia of consumers, and uncertainty about future energy prices and actual savings from energy efficiency investments.

Measures narrowing the energy efficiency gap

Energy efficiency gap exists in various sectors, ranging from households, small businesses, corporations, and governments. [5] Many policies and programs have been developed to overcome those barriers and close the energy efficiency gap.

Subsidies and incentives for energy-efficient technologies. Insufficient capital investment could be overcome by more aggressive tax subsidies, loan guarantees, and low-interest government loans for energy efficient technologies. [6]

Minimum building and equipment efficiency standards. Minimum building and equipment efficiency standards are cost-effective approaches to save energy. Effective implementation and upgrading of building energy efficiency standards could improve the energy integrity of new buildings, [6] while equipment efficiency standards could help reduce energy consumption and pollution during the life-cycle of equipment.

Information programs. Research has proved that providing accurate and trustworthy information on energy use and energy efficiency choices could help narrow the gap. [7] Three forms of information programs can be implemented to help producers and consumers make more informed and rational decisions. [6] The first one is generic information applicable to all energy decision, such as forecasts of future energy pricies; the second type of program is to provide comparative information to facilitate technology and product choices, such as product rating and labeling systems; the third type of program is to offer specific recommendations for producers’ and consumers’ investment choices or behavior changes.

Government procurement programs for energy-efficient technologies. Government agencies could be required to procure energy-efficient products. This would help improve the energy efficiency of government sector, and the “learning by doing” impact would create early markets for energy-efficient technologies. [6]

Some real-world examples of those measures include the following: EU's energy consumption labeling scheme, U.S. DOE's building energy codes program, and EPA's and DOE's ENERGY STAR® voluntary labeling programs.

Related Research Articles

<span class="mw-page-title-main">Microeconomics</span> Behavior of individuals and firms

Microeconomics is a branch of economics that studies the behavior of individuals and firms in making decisions regarding the allocation of scarce resources and the interactions among these individuals and firms. Microeconomics focuses on the study of individual markets, sectors, or industries as opposed to the national economy as a whole, which is studied in macroeconomics.

<span class="mw-page-title-main">Emissions trading</span> Market-based approach used to control pollution

Emissions trading is a market-based approach to controlling pollution by providing economic incentives for reducing the emissions of pollutants. The concept is also known as cap and trade (CAT) or emissions trading scheme (ETS). One prominent example is carbon emission trading for CO2 and other greenhouse gases which is a tool for climate change mitigation. Other schemes include sulfur dioxide and other pollutants.

Energy economics is a broad scientific subject area which includes topics related to supply and use of energy in societies. Considering the cost of energy services and associated value gives economic meaning to the efficiency at which energy can be produced. Energy services can be defined as functions that generate and provide energy to the “desired end services or states”. The efficiency of energy services is dependent on the engineered technology used to produce and supply energy. The goal is to minimise energy input required to produce the energy service, such as lighting (lumens), heating (temperature) and fuel. The main sectors considered in energy economics are transportation and building, although it is relevant to a broad scale of human activities, including households and businesses at a microeconomic level and resource management and environmental impacts at a macroeconomic level.

An energy crisis or energy shortage is any significant bottleneck in the supply of energy resources to an economy. In literature, it often refers to one of the energy sources used at a certain time and place, in particular, those that supply national electricity grids or those used as fuel in industrial development. Population growth has led to a surge in the global demand for energy in recent years. In the 2000s, this new demand – together with Middle East tension, the falling value of the US dollar, dwindling oil reserves, concerns over peak oil, and oil price speculation – triggered the 2000s energy crisis, which saw the price of oil reach an all-time high of $147.30 per barrel ($926/m3) in 2008.

Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste.

In theories of competition in economics, a barrier to entry, or an economic barrier to entry, is a fixed cost that must be incurred by a new entrant, regardless of production or sales activities, into a market that incumbents do not have or have not had to incur. Because barriers to entry protect incumbent firms and restrict competition in a market, they can contribute to distortionary prices and are therefore most important when discussing antitrust policy. Barriers to entry often cause or aid the existence of monopolies and oligopolies, or give companies market power. Barriers of entry also have an importance in industries. First of all it is important to identify that some exist naturally, such as brand loyalty. Governments can also create barriers to entry to meet consumer protection laws, protecting the public. In other cases it can also be due to inherent scarcity of public resources needed to enter a market.

<span class="mw-page-title-main">Energy conservation</span> Reducing energy consumption

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less service. Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

<span class="mw-page-title-main">Jevons paradox</span> Efficiency leads to increased demand

In economics, the Jevons paradox occurs when technological progress or government policy increases the efficiency with which a resource is used, but the falling cost of use induces increases in demand enough that resource use is increased, rather than reduced. Governments typically assume that efficiency gains will lower resource consumption, ignoring the possibility of the paradox arising.

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

<span class="mw-page-title-main">Negawatt market</span> Theoretical unit of power savings

Negawatt power is investment to reduce electricity consumption rather than investing to increase supply capacity. In this way investing in negawatts can be considered as an alternative to a new power station and the costs and environmental concerns can be compared.

<span class="mw-page-title-main">Energy policy of the United States</span> Where and how the United States gets electrical and other power

The energy policy of the United States is determined by federal, state, and local entities. It addresses issues of energy production, distribution, consumption, and modes of use, such as building codes, mileage standards, and commuting policies. Energy policy may be addressed via legislation, regulation, court decisions, public participation, and other techniques.

In energy conservation and energy economics, the rebound effect is the reduction in expected gains from new technologies that increase the efficiency of resource use, because of behavioral or other systemic responses. These responses diminish the beneficial effects of the new technology or other measures taken. A definition of the rebound effect is provided by Thiesen et al. (2008) as, “the rebound effect deals with the fact that improvements in efficiency often lead to cost reductions that provide the possibility to buy more of the improved product or other products or services.” A classic example from this perspective is a driver who substitutes a vehicle with a fuel-efficient version, only to reap the benefits of its lower operating expenses to commute longer and more frequently."

Efficient energy use, sometimes simply called energy efficiency, is the process of reducing the amount of energy required to provide products and services. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

<span class="mw-page-title-main">Smart grid</span> Type of electrical grid

The smart grid is an enhancement of the 20th century electrical grid, using two-way communications and distributed so-called intelligent devices. Two-way flows of electricity and information could improve the delivery network. Research is mainly focused on three systems of a smart grid – the infrastructure system, the management system, and the protection system. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

Economic theory evaluates how taxes are able to provide the government with required amount of the financial resources and what are the impacts of this tax system on overall economic efficiency. If tax efficiency needs to be assessed, tax cost must be taken into account, including administrative costs and excessive tax burden also known as the dead weight loss of taxation (DWL). Direct administrative costs include state administration costs for the organisation of the tax system, for the evidence of taxpayers, tax collection and control. Indirect administrative costs can include time spent filling out tax returns or money spent on paying tax advisors.

<span class="mw-page-title-main">Economics of climate change mitigation</span> Part of the economics of climate change related to climate change mitigation

The economics of climate change mitigation is a contentious part of climate change mitigation – action aimed to limit the dangerous socio-economic and environmental consequences of climate change.

Market transformation describes both a policy objective and a program strategy to promote the value and self-sustaining presence of energy-efficient technologies in the marketplace. It is a strategic process of market intervention which aims to alter market behavior by removing identified barriers and leveraging opportunities to further the internalization of cost-effective energy efficiency as a matter of standard practice. Market transformation has rapidly become the objective of many privately and publicly supported energy efficiency programs in the United States and other countries.

The United Kingdom is committed to legally binding greenhouse gas emissions reduction targets of 34% by 2020 and 80% by 2050, compared to 1990 levels, as set out in the Climate Change Act 2008. Decarbonisation of electricity generation will form a major part of this reduction and is essential before other sectors of the economy can be successfully decarbonised.

The Energy Conservation Program for Consumer Products Other Than Automobiles is a regulatory program that enforces minimum energy conservation standards for appliances and equipment in the United States. The program was established under Part B of Title III of the Energy Policy and Conservation Act of 1975 and gives the Department of Energy (DOE) the authority to develop and implement test procedures and minimum standards for more than 60 products covering residential, commercial and industrial, lighting, and plumbing applications. The Department of Energy is required to set standards that are "technologically feasible and economically justified."

References

  1. 1 2 3 Hirst, Eric; Brown, Marilyn (1 June 1990). "Closing the efficiency gap: barriers to the efficient use of energy". Resources, Conservation and Recycling. 3 (4): 267–281. doi:10.1016/0921-3449(90)90023-W. ISSN   0921-3449 via Elsevier Science Direct.
  2. International Energy Agency. (2007). Mind the Gap. Quantifying Principal-Agent Problems in Energy Efficiency.
  3. Koopmans, Carl C.; te Velde, Dirk Willem (1 January 2001). "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model". Energy Economics. 23 (1): 57–75. doi:10.1016/S0140-9883(00)00054-2. ISSN   0140-9883 via Elsevier Science Direct.
  4. 1 2 Jaffe, Adam B.; Stavins, Robert N. (1 October 1994). "The energy-efficiency gap What does it mean?". Energy Policy. Markets for energy efficiency. 22 (10): 804–810. doi:10.1016/0301-4215(94)90138-4. ISSN   0301-4215 via Elsevier Science Direct.
  5. Dietz, Thomas (14 September 2010). "Narrowing the US energy efficiency gap". Proceedings of the National Academy of Sciences. 107 (37): 16007–16008. Bibcode:2010PNAS..10716007D. doi: 10.1073/pnas.1010651107 . ISSN   0027-8424. PMC   2941271 . PMID   20807749.
  6. 1 2 3 4 Brown, Marilyn A.; Chandler, Jess; Lapsa, Melissa V.; Sovacool, Benjamin K. (1 January 2008). Carbon Lock-In: Barriers to Deploying Climate Change Mitigation Technologies (Report). doi: 10.2172/1424507 .
  7. Attari, Shahzeen Z.; DeKay, Michael L.; Davidson, Cliff I.; Bruine de Bruin, Wändi (14 September 2010). "Public perceptions of energy consumption and savings". Proceedings of the National Academy of Sciences. 107 (37): 16054–16059. doi: 10.1073/pnas.1001509107 . ISSN   0027-8424. PMC   2941272 . PMID   20713724.