Energy management software

Last updated

Energy Management Software (EMS) is a general term and category referring to a variety of energy-related software [1] applications which may provide utility bill tracking, real-time metering, building HVAC and lighting control systems, building simulation and modeling, carbon and sustainability reporting, IT equipment management, demand response, and/or energy audits. Managing energy can require a system of systems approach. [2]

Contents

Energy management software often provides tools for reducing energy costs and consumption for buildings, communities or industries. [3] EMS collects energy data and uses it for three main purposes: Reporting, Monitoring and Engagement. Reporting may include verification of energy data, benchmarking, and setting high-level energy use reduction targets. Monitoring may include trend analysis and tracking energy consumption to identify cost-saving opportunities. Engagement can mean real-time responses (automated or manual), or the initiation of a dialogue between occupants and building managers to promote energy conservation. One engagement method that has recently gained popularity is the real-time energy consumption display available in web applications or an onsite energy dashboard/display.

Data collection

Energy Management Software collects historic and/or real-time interval data, with intervals varying from quarterly billing statements to minute-by-minute smart meter readings. In addition to energy consumption, an EMS collects data related to variables that impact energy consumption such as number of people in the building, outside temperature, number of produced units, and more. [4] The data are collected from interval meters, Building Automation Systems (BAS), directly from utilities, directly from sensors on electrical circuits, [5] or other sources. Past bills can be used to provide a comparison between pre- and post-EMS energy consumption.

Data analytics

Through Energy Data Analytics, EMS assists the users in the composition of mathematical formulas for analyzing, forecasting and tracking energy conservation measures to quantify the success of the measure, once implemented. Energy analytics [6] help energy managers combine across energy and non-energy data to create key performance indicators, calculate carbon footprint, greenhouse gas, renewable heat incentives and energy efficiency certifications to meet local climate change policies, directives, regulation and certifications. Energy analytics also include intelligent algorithms such as classification and machine learning to analyse the energy consumption of buildings and/or its equipment that build up a memory of energy use patterns, learn the good and bad energy consumption behaviours and notify in case of abnormal energy use.

Reporting

Reporting tools are targeted at owners and executives who want to automate energy and emissions auditing. Cost and consumption data from a number of buildings can be aggregated or compared with the software, saving time relative to manual reporting. EMS offers more detailed energy information than utility billing can provide; another advantage is that outside factors affecting energy use, such as weather condition or building occupancy, can be accounted for as part of the reporting process. This information can be used to prioritize energy savings initiatives and balance energy savings against energy-related capital expenditures.

Bill verification can be used to compare metered consumption against billed consumption. Bill analysis can also demonstrate the impact of different energy costs, for example by comparing electrical demand charges to consumption costs.

Greenhouse gas (GHG) accounting can calculate direct or indirect GHG emissions, which may be used for internal reporting or enterprise carbon accounting.

Monitoring

Monitoring tools track and display real-time and historical data. Often, EMS includes various benchmarking tools, such as energy consumption per square foot, weather normalization or more advanced analysis using energy modelling algorithms to identify anomalous consumption. Seeing exactly when energy is used, combined with anomaly recognition, can allow Facility or Energy Managers to identify savings opportunities.

Initiatives such as demand shaving, replacement of malfunctioning equipment, retrofits of inefficient equipment, and removal of unnecessary loads can be discovered and coordinated using the EMS. For example, an unexpected energy spike at a specific time each day may indicate an improperly set or malfunctioning timer. These tools can also be used for Energy Monitoring and Targeting. EMS uses models to correct for variable factors such as weather when performing historical comparisons to verify the effect of conservation and efficiency initiatives.

EMS may offer alerts, via text or email messages, when consumption values exceed pre-defined thresholds based on consumption or cost. These thresholds may be set at absolute levels, or use an energy model to determine when consumption is abnormally high or low. More recently, smartphones and tablets are becoming mainstream platforms for EMS. [7] [8] [9]

Sustainability management

Monitoring the flows of energy in building allows the users to directly monitor part of the sustainable goals of companies. Allowing them to affect them indirectly. Thats reason why EMS are becoming tool for Sustainability Managers in corporate sphere. Developing new branch of Sustainability Management System (SMS), that can direct part of EMS.

Monitoring the energy flows allow Scope 1 and Scope 2 emissions to be calculated based on EMS data. [10]

Engagement

Engagement can refer to automated or manual responses to collected and analyzed energy data. Building control systems can respond as readily to energy fluctuation as a heating system can respond to temperature variation. Demand spikes can trigger equipment power-down processes, with or without human intervention. [11]

Another objective of Engagement is to connect occupants’ daily choices with building energy consumption. By displaying real-time consumption information, occupants see the immediate impact of their actions. The software can be used to promote energy conservation initiatives, offer advice to the occupants, or provide a forum for feedback on sustainability initiatives.

People-driven energy conservation programs, such as those sponsored by Energy Education, can be highly effective in reducing energy use and cost.

Letting occupants know their real-time consumption alone can be responsible for a 7% reduction in energy consumption. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Automatic meter reading</span> Transmitting consumption data from a utility meter to the utility provider

Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from water meter or energy metering devices and transferring that data to a central database for billing, troubleshooting, and analyzing. This technology mainly saves utility providers the expense of periodic trips to each physical location to read a meter. Another advantage is that billing can be based on near real-time consumption rather than on estimates based on past or predicted consumption. This timely information coupled with analysis can help both utility providers and customers better control the use and production of electric energy, gas usage, or water consumption.

<span class="mw-page-title-main">Energy conservation</span> Reducing energy consumption

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less service. Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

Energy accounting is a system used to measure, analyze and report the energy consumption of different activities on a regular basis. This is done to improve energy efficiency, and to monitor the environment impact of energy consumption.

<span class="mw-page-title-main">Green building</span> Structures and processes of building structures that are more environmentally responsible

Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. Green building also refers to saving resources to the maximum extent, including energy saving, land saving, water saving, material saving, etc., during the whole life cycle of the building, protecting the environment and reducing pollution, providing people with healthy, comfortable and efficient use of space, and being in harmony with nature. Buildings that live in harmony; green building technology focuses on low consumption, high efficiency, economy, environmental protection, integration and optimization.’

An energy management system (EMS) is a system of computer-aided tools used by operators of electric utility grids to monitor, control, and optimize the performance of the generation or transmission system. Also, it can be used in small scale systems like microgrids.

Green computing, green IT, or ICT sustainability, is the study and practice of environmentally sustainable computing or IT.

<span class="mw-page-title-main">Building science</span>

Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants' thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships.

Energy monitoring and targeting (M&T) is an energy efficiency technique based on the standard management axiom stating that “you cannot manage what you cannot measure”. M&T techniques provide energy managers with feedback on operating practices, results of energy management projects, and guidance on the level of energy use that is expected in a certain period. Importantly, they also give early warning of unexpected excess consumption caused by equipment malfunctions, operator error, unwanted user behaviours, lack of effective maintenance and the like.

<span class="mw-page-title-main">Utility submeter</span> Tenant utility billing system

Utility sub-metering is a system that allows a landlord, property management firm, condominium association, homeowners association, or other multi-tenant property to bill tenants for individual measured utility usage. The approach makes use of individual water meters, gas meters, or electricity meters.

<span class="mw-page-title-main">Sustainable Development Strategy in Canada</span>

Sustainable Development Strategy for organizations in Canada is about the Government of Canada finding ways to develop social, financial, and environmental resources that meet the needs of the present without compromising the ability of future generations to meet their own needs in Canada. A Sustainable Development Strategy for the organization needs to be developed that establishes the Sustainable Development goals and objectives set by the Auditor General Act of Canada and provides the written policies and procedures to achieve them. Sustainable Development is based on responsible decision-making, which considers not only the economic benefits of development, but also the short-term and long-term, Canadian environment and environmental impacts.

<span class="mw-page-title-main">Energy audit</span> Inspection, survey and analysis of energy flows in a building

An energy audit is an inspection survey and an analysis of energy flows for energy conservation in a building. It may include a process or system to reduce the amount of energy input into the system without negatively affecting the output. In commercial and industrial real estate, an energy audit is the first step in identifying opportunities to reduce energy expense and carbon footprint.

GridPoint is an American clean technology company based in Reston, Virginia, that provides energy management and sustainability services to enterprises and government agencies, such as electric utilities.

<span class="mw-page-title-main">Home energy monitor</span> Electrical measuring device

A home energy monitor is a device that provides information about a personal electrical energy usage to a consumer of electricity. Devices may display the amount of electricity used, plus the cost of energy used and estimates of greenhouse gas emissions. The purpose of such devices is to assist in the management of power consumption. Several initiatives has been launched to increase the usage of home energy monitors. Studies have shown a reduction of home energy when the devices are used.

A Deep energy retrofit can be broadly categorized as an energy conservation measure in an existing building also leading to an overall improvement in the building performance. While there is no exact definition for a deep energy retrofit, it can be defined as a whole-building analysis and construction process, that aims at achieving on-site energy use minimization in a building by 50% or more compared to the baseline energy use making use of existing technologies, materials and construction practices. Such a retrofit reaps multifold benefits beyond energy cost savings, unlike conventional energy retrofit. It may also involve remodeling the building to achieve a harmony in energy, indoor air quality, durability, and thermal comfort. An integrated project delivery method is recommended for a deep energy retrofit project. An over-time approach in a deep energy retrofitting project provides a solution to the large upfront costs problem in all-at-once execution of the project.

DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century

ASU Campus Metabolism is a website managed by Arizona State University, demonstrating Energy monitoring and targeting through use of real-time and historic energy use data of buildings on the campus in Tempe, Arizona. The site displays data from an Energy Information System in order to support education, research, operations and outreach regarding sustainability of operations on the ASU Tempe campus. The site is part of a plan for the campus to be carbon-neutral by 2025.

NABERS, the National Australian Built Environment Rating System, is an initiative by the government of Australia to measure and compare the environmental performance of Australian buildings and tenancies. There are NABERS rating tools for commercial office buildings to measure greenhouse gas emissions, energy efficiency, water efficiency, waste efficiency and indoor environment quality. There are also energy/greenhouse and water rating tools for hotels, shopping centres and data centres.

Verdigris Technologies (Verdigris) is an artificial intelligence technology start-up founded in 2011 by Mark Chung, Thomas Chung and Jonathan Chu. The company is headquartered in the NASA Ames Research Center located in Silicon Valley in California.

<span class="mw-page-title-main">ECOCITIES (software)</span>

ECOCITIES is an energy optimization system for building portfolios combining and extending the benefits of Energy Management Software (EMS), Computer-aided Facility Management (CAFM) software and building portfolio management software. It integrates building administration and monitoring, energy accounting and building portfolio optimization. Thereby, it supports the definition of low carbon action plans in terms of environmental impact and financial impact.

A water audit (domestic/household), similar to an energy audit, is the method of quantifying all the flows of water in a system to understand its usage, reduce losses and improve water conservation. It can be performed on a large scale for a city or a state as well on a smaller scale for irrigation projects, industries, and buildings. The audit can begin with an extensive approach to generate the water balance using available data and estimates which helps in identifying specific areas to concentrate in further stages.

An Energy Management System is, in the context of energy conservation, a computer system which is designed specifically for the automated control and monitoring of those electromechanical facilities in a building which yield significant energy consumption such as heating, ventilation and lighting installations. The scope may span from a single building to a group of buildings such as university campuses, office buildings, retail stores networks or factories. Most of these energy management systems also provide facilities for the reading of electricity, gas and water meters. The data obtained from these can then be used to perform self-diagnostic and optimization routines on a frequent basis and to produce trend analysis and annual consumption forecasts.

References

  1. Mahmud, Khizir; Town, Graham E. (June 2016). "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks". Applied Energy. 172: 337–359. Bibcode:2016ApEn..172..337M. doi:10.1016/j.apenergy.2016.03.100.
  2. Curry, Edward. 2012. “System of Systems Information Interoperability Using a Linked Dataspace.” In IEEE 7th International Conference on System of Systems Engineering (SOSE 2012), 101–106.
  3. ""Industry & Energy Management Software"".
  4. "Energis.Cloud - Energy Management Software".
  5. "SiteSage EMS architecture".
  6. "Wattics Energy Management Analytics".
  7. "Serious Energy Management Software uses Smartphones". Archived from the original on 2011-06-19. Retrieved 2011-07-07.
  8. "Powerhouse Dynamics' mobile app expands real-time facility ops and energy management capabilities". Archived from the original on 2018-06-12. Retrieved 2016-10-04.
  9. "Energy Management System"
  10. "Carbon Footprint Reporting | Sustainability Management | Enmon". www.enmon.tech. Retrieved 2024-06-26.
  11. ""Building Automation and Control"". Archived from the original on 2014-08-11. Retrieved 2012-07-10.
  12. "The Prius Effect" by Elizabeth Dickinson