The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations .(October 2013) |
A major contributor to this article appears to have a close connection with its subject.(July 2019) |
Company type | Private |
---|---|
Founded | 2002 |
Area served | Worldwide |
Key people | Al Siblani (CEO) |
Products | Desktop 3D printers Production 3D printers 3D bioprinters Robotic 3D printers Rapid prototyping solutions Direct digital manufacturing |
Website | envisiontec |
EnvisionTEC is a privately held global company that develops, manufactures and sells more than 40 configurations of desktop and production 3D printers based on seven several distinct process technologies that build objects from digital design files. Founded in 2002, the company now has a corporate headquarters for North America, located in Dearborn, Mich., and International headquarters in Gladbeck, Germany. It also has a production facility in the Greater Los Angeles area, as well as additional facilities in Montreal, for materials research, in Kyiv, Ukraine, for software development, and in Woburn, Mass, for robotic 3D printing research and development. Today, the company's 3D Printers are used for mass customized production and to manufacture finished goods, investment casting patterns, tooling, prototypes and more. EnvisionTEC serves a variety of medical, professional and industrial customers. EnvisionTEC has developed large customer niches in the jewelry, [1] dental, [2] [3] hearing aid, [4] medical device, [5] biofabrication [6] and animation [7] industries. EnvisionTEC is one of the few 3D printer companies globally whose products are being used for real production of final end-use parts. [8]
Since it filed its first patent in 1999, EnvisionTEC has developed and brought to market several new additive manufacturing technologies used for 3D printing.
Three of those technologies are based on harnessing light as a tool to cure liquid resin into a three-dimensional object based on a digital design files.
EnvisionTEC has also been developing and expanding its process technology beyond DLP and light-based curing technologies, too.
The company's 3D-Bioplotter [13] series now includes a Starter, Developer and Manufacturing model that extrude materials in three dimensions using pressure. Materials range from a viscous paste to a liquid, and are inserted using syringes moving in three dimensions. Air or mechanical pressure is applied to the syringe, which then deposits a strand of material for the length of movement and time the pressure is applied. Parallel strands are plotted in one layer. For the following layer, the direction of the strands is turned over the center of the object, creating a fine mesh with good mechanical properties and mathematically well-defined porosity. The 3D-Bioplotter is frequently used in biofabrication and is being used in a wide range of medical research. [14] Scientists from Northwestern University, for example, have created 3D printed ovary implants using an EnvisionTEC 3D-Bioplotter that may be used one day to treat women experiencing infertility. [15] [16]
EnvisionTEC sells more than 40 configurations of 3D Printers that sell for between $6,299 and $1 million. [17] The company's printers are organized into several families of printers: Desktops (Aria, Micro, Vida, Aureus, etc.); Perfactory; cDLM; 3SP; 3D-Bioplotter; and the SLCOM. EnvisionTEC also markets and sells the Viridis3D RAM123 under an "exclusive strategic partnership."
In early 2016, EnvisionTEC demonstrated a shift in its strategic direction with the launch of several new models of printers, including the 3D-Bioplotter Starter Series, the SLCOM 1 and RAM123. "Previously known as pioneers in the 3D printing technology of digital light processing (DLP), the U.S.-German company has managed to redefine itself once again by announcing three new platforms at the event: a new bioprinter, a 3D printer for sandcasting and, perhaps its most substantial unveil, a massive industrial 3D printer dedicated to composite manufacturing," according to Engineering.com. [18]
EnvisionTEC was founded by Hendrik John a German inventor and later managed by John and its current owner, Al Siblani, a Lebanese immigrant who came to the United States to complete his higher education. After earning a bachelor's degree in engineering at Lawrence Technological University [19] and a master's degree in electrical and computer engineering from Wayne State University, both located in Metro Detroit, Siblani entered a 3D printing market still in its infancy. He began working in 1993, for an early 3D printing company, Helisys, that used Laminated Object Manufacturing (LOM) technology to create prototypes for automakers and other commercial customers. [20] Shortly thereafter, he founded Sibco Inc., which provided 3D printing services and materials. In 1996, after mastering the 3D printing technologies and materials at the time, Siblani decided to make his own 3D printing machines using a then-novel idea to cure resins into objects. His first patent submission, which laid the foundation for EnvisionTEC, was filed in 1999. In 2015, Siblani was honored as a finalist for the Ernst & Young Entrepreneur of the Year program for the Michigan and Northwest Ohio region. [21]
Stereolithography is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes by which light causes chemical monomers and oligomers to cross-link together to form polymers. Those polymers then make up the body of a three-dimensional solid. Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986. Stereolithography can be used to create prototypes for products in development, medical models, and computer hardware, as well as in many other applications. While stereolithography is fast and can produce almost any design, it can be expensive.
3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.
A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.
3D Systems Corporation is an American company based in Rock Hill, South Carolina, that engineers, manufactures, and sells 3D printers, 3D printing materials, 3D printed parts, and application engineering services. The company creates product concept models, precision and functional prototypes, master patterns for tooling, as well as production parts for direct digital manufacturing. It uses proprietary processes to fabricate physical objects using input from computer-aided design and manufacturing software, or 3D scanning and 3D sculpting devices.
Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.
Chuck Hull is an American inventor who is the co-founder, executive vice president and chief technology officer of 3D Systems. He is one of the inventors of the SLA 3D printer, the first commercial rapid prototyping technology, and the widely used STL file format. He is named on more than 60 U.S. patents as well as other patents around the world in the fields of ion optics and rapid prototyping. He was inducted into the National Inventors Hall of Fame in 2014 and in 2017 was one of the first inductees into the TCT Hall of Fame.
Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.
Multiphoton lithography is similar to standard photolithography techniques; structuring is accomplished by illuminating negative-tone or positive-tone photoresists via light of a well-defined wavelength. The main difference is the avoidance of photomasks. Instead, two-photon absorption is utilized to induce a change in the solubility of the resist for appropriate developers.
Objet Geometries is one of the brands of Stratasys, a 3D printer developing company. The brand began with Objet Geometries Ltd, a corporation engaged in the design, development, and manufacture of photopolymer 3D printing systems. The company, incorporated in 1998, was based in Rehovot, Israel. In 2011 the company merged with Stratasys. It held patents on a number of associated printing materials that are used in PolyJet and PolyJet Matrix polymer jetting technologies. It distributed 3D printers worldwide through wholly owned subsidiaries in the United States, Europe, and Hong Kong. Objet Geometries owned more than 50 patents and patent-pending inventions.
Solid ground curing (SGC) is a photo-polymer-based additive manufacturing technology used for producing models, prototypes, patterns, and production parts, in which the production of the layer geometry is carried out by means of a high-powered UV lamp through a mask. As the basis of solid ground curing is the exposure of each layer of the model by means of a lamp through a mask, the processing time for the generation of a layer is independent of the complexity of the layer. SGC was developed and commercialized by Cubital Ltd. of Israel in 1986 in the alternative name of Solider System.
Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.
Continuous Liquid Interface Production is a proprietary method of 3D printing that uses photo polymerization to create smooth-sided solid objects of a wide variety of shapes using resins. It was invented by Joseph DeSimone, Alexander and Nikita Ermoshkin and Edward T. Samulski and was originally owned by EiPi Systems, but is now being developed by Carbon.
Carbon, Inc. is a digital manufacturing company that manufactures and develops 3D printers utilizing the Continuous Liquid Interface Production process. The company was founded in 2013, and maintains its headquarters in California, United States.
Kudo3D, based in Dublin, California, manufactures professional desktop 3D printers. Its Titan 1 and Titan 2 3D printer use a proprietary passive self-peeling technology, making it one of the leading professional high-resolution stereolithography printers. This technology allows both the Titan 1 and Titan 2 to be used in printing for various applications.
Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.
In recent years, 3D printing has developed significantly and can now perform crucial roles in many applications, with the most common applications being manufacturing, medicine, architecture, custom art and design, and can vary from fully functional to purely aesthetic applications.
A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.
3D printing speed measures the amount of manufactured material over a given time period, where the unit of time is measured in Seconds, and the unit of manufactured material is typically measured in units of either kg, mm or cm3, depending on the type of additive manufacturing technique.
Multi-material 3D printing is the additive manufacturing procedure of using multiple materials at the same time to fabricate an object. Similar to single material additive manufacturing it can be realised through methods such as FFF, SLA and Inkjet 3D printing. By expanding the design space to different materials, it establishes the possibilities of creating 3D printed objects of different color or with different material properties like elasticity or solubility. The first multi-material 3D printer Fab@Home became publicly available in 2006. The concept was quickly adopted by the industry followed by many consumer ready multi-material 3D printers.
High-area rapid printing (HARP) is a stereolithography (SLA) method that permits the continuous, high-throughput printing of large objects at rapid speeds. This method was introduced in 2019 by the Mirkin Research Group at Northwestern University in order to address drawbacks associated with traditional SLA manufacturing processes. Since the polymerization reactions involved in SLA are highly exothermic processes, the production of objects at high-throughputs is associated with high temperatures that can result in structural defects. HARP addresses this problem by utilizing a solid-liquid slip boundary that cools the resin by withdrawing heat from the system. This allows for large structures to be fabricated quickly without the temperature-associated defects inherent to other SLA processes.