Equilibrium gel

Last updated

Equilibrium gel is made from a synthetic clay. Unlike other gels, it maintains the same consistency throughout its structure and is stable, which means it does not separate into sections of solid mass and those of more liquid mass. Equilibrium gel filtration liquid chromatography is a technique used for the quantitation of ligand binding. [1] [2]

Contents

Synthesis

Illustration of the bonding interaction between clay platelets Illustration of the bonding interaction between clay platelets.jpg
Illustration of the bonding interaction between clay platelets

The gel is created by suspending synthetic clay in water. The initial fluid transformed into gel after a few months with concentrations of up to 1% clay by weight. After three years the substance separated into two phases. One phase was clay-rich while the other was clay-poor. However, at concentrations above 1% no such phase separation occurred. Unlike the lower concentrations where the arrangement of clay particles was continually in flux, the particles above 1% concentration locked into a stable structure which is known as equilibrium gel. [3]

Clay particles interact in an anisotropic way differing from the typical isotropic way of colloidal particles, which normally interact with all of their nearest neighbors when forming a gel. The clay particles are disc-shaped giving them an asymmetric charge distribution with a net positive charge on their edges and net negative on their faces. This doesn't allow them to interact with their neighbors, and they tend to form T-bonds. This lets clay particles connect in a chain and allows the gel to form at a low density. [4] [5]

Properties

Equilibrium gel is similar to any gel in the way that it is a colloid in which the disperse phase has combined with the dispersion medium to produce a semisolid material. The difference with equilibrium gel is that it will not separate over time into two separate phase like all other gels. In a study taking place over seven years, scientist concluded that colloidal clays at slightly higher concentrations evolved reversibly and continuously from the empty liquid state to an arrested structure. From this observed properties the name equilibrium gel was derived. [2]

Equilibrium gel shares the traits of all soft matter. Soft matter is a conceptual term that can be used to categorize polymers, liquid crystals, colloids, amphilphilic molecules, glass, granular and biological materials. One of the main characteristics of Equilibrium gel as with soft matter is that it displays various mesoscopic structures originating from a large number of internal degrees of freedoms of each molecule. [6]

Applications

Scientists are already coming up with potential applications for equilibrium gel. One such application is batteries containing a gel electrolyte. Producing a relatively high power for a given weight, the battery could be incorporated into microscope devices if the gel could be made at a low enough density. [1]

Equilibrium gel could also be used as coatings to deliver drugs into the body. Using the gel for coatings instead of other substances would be beneficial. This is due to the fact that the gel would allow the coatings to be lighter, thus reducing the amount of material that enters the body. The coatings protect against the bodies immune system and dissolve when the drug reaches its target. [1]

Notes and references

  1. 1 2 3 Cartlidge, Edwin (2010-12-21). "New State of Matter Seen in Clay". Science. doi:10.1126/article.29483 (inactive 2024-09-18). Retrieved 2013-09-10.{{cite web}}: CS1 maint: DOI inactive as of September 2024 (link)
  2. 1 2 3 "A new state of soft matter confirmed". General News 2010. ESRF website. December 12, 2010. Retrieved 2013-09-10.
  3. "Empty Liquids and Equilibrium Gels in a Colloidal Clay". Sapienza 2010. ISC Website. May 1, 2011. Retrieved 2013-12-02.
  4. "Patch Colloids". Research. erc Website. Archived from the original on 2013-12-06. Retrieved 2013-12-02.
  5. Ruzicka, Barbara; Zaccarelli, Emanuela; Zulian, Laura; Angelini, Roberta; Sztucki, Michael; Moussaïd, Abdellatif; Narayanan, Theyencheri; Sciortino, Francesco (January 2011). "Observation of empty liquids and equilibrium gels in a colloidal clay". Nature Materials. 10 (1): 56–60. arXiv: 1007.2111 . Bibcode:2011NatMa..10...56R. doi:10.1038/nmat2921. PMID   21151164.
  6. Komura, Shigeyuki (2012). Non-equilibrium Soft Matter Physics. Singapore: World Scientific Publishing Company. Bibcode:2012nesm.book.....K.

Related Research Articles

<span class="mw-page-title-main">Colloid</span> Mixture of an insoluble substance microscopically dispersed throughout another substance

A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture. A colloid has a dispersed phase and a continuous phase. The dispersed phase particles have a diameter of approximately 1 nanometre to 1 micrometre.

<span class="mw-page-title-main">Gel</span> Highly viscous liquid exhibiting a kind of semi-solid behavior

A gel is a semi-solid that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady state, although the liquid phase may still diffuse through this system.

<span class="mw-page-title-main">Size-exclusion chromatography</span> Chromatographic method in which dissolved molecules are separated by their size & molecular weight

Size-exclusion chromatography, also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their shape, and in some cases size. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are commonly composed of dextran, agarose, or polyacrylamide polymers. The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers.

<span class="mw-page-title-main">Soft matter</span> Subfield of condensed matter physics

Soft matter or soft condensed matter is a type of matter that can be deformed or structurally altered by thermal or mechanical stress which is of similar magnitude to thermal fluctuations.

<span class="mw-page-title-main">Flocculation</span> Process by which colloidal particles come out of suspension to precipitate as floc or flake

In colloidal chemistry, flocculation is a process by which colloidal particles come out of suspension to sediment in the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from precipitation in that, prior to flocculation, colloids are merely suspended, under the form of a stable dispersion and are not truly dissolved in solution.

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers in solution into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol–gel process is used to produce ceramic nanoparticles.

A surface charge is an electric charge present on a two-dimensional surface. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge distribution on the surface. The electric potential is continuous across a surface charge and the electric field is discontinuous, but not infinite; this is unless the surface charge consists of a dipole layer. In comparison, the potential and electric field both diverge at any point charge or linear charge.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter.

<span class="mw-page-title-main">Lyotropic liquid crystal</span> Solution of amphiphilic molecules which has both fluid and crystalline properties

Lyotropic liquid crystals result when amphiphiles, which are both hydrophobic and hydrophilic, dissolve into a solution that behaves both like a liquid and a solid crystal. This liquid crystalline mesophase includes everyday mixtures like soap and water.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Colloidal crystal</span> Ordered array of colloidal particles

A colloidal crystal is an ordered array of colloidal particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed locally periodic structure under moderate compression. Bulk properties of a colloidal crystal depend on composition, particle size, packing arrangement, and degree of regularity. Applications include photonics, materials processing, and the study of self-assembly and phase transitions.

Colloid-facilitated transport designates a transport process by which colloidal particles serve as transport vector of diverse contaminants in the surface water and in underground water circulating in fissured rocks (limestone, sandstone, granite, ...). The transport of colloidal particles in surface soils and in the ground can also occur, depending on the soil structure, soil compaction, and the particles size, but the importance of colloidal transport was only given sufficient attention during the 1980 years. Radionuclides, heavy metals, and organic pollutants, easily sorb onto colloids suspended in water and that can easily act as contaminant carrier.

<span class="mw-page-title-main">Particle</span> Small localized object

In the physical sciences, a particle is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion.

The Stöber process is a chemical process used to prepare silica particles of controllable and uniform size for applications in materials science. It was pioneering when it was reported by Werner Stöber and his team in 1968, and remains today the most widely used wet chemistry synthetic approach to silica nanoparticles. It is an example of a sol-gel process wherein a molecular precursor is first reacted with water in an alcoholic solution, the resulting molecules then joining together to build larger structures. The reaction produces silica particles with diameters ranging from 50 to 2000 nm, depending on conditions. The process has been actively researched since its discovery, including efforts to understand its kinetics and mechanism – a particle aggregation model was found to be a better fit for the experimental data than the initially hypothesized LaMer model. The newly acquired understanding has enabled researchers to exert a high degree of control over particle size and distribution and to fine-tune the physical properties of the resulting material in order to suit intended applications.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span> Physical phenomenon

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or "creaming" of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.

Patchy particles are micron- or nanoscale colloidal particles that are anisotropically patterned, either by modification of the particle surface chemistry, through particle shape, or both. The particles have a repulsive core and highly interactive surfaces that allow for this assembly. The placement of these patches on the surface of a particle promotes bonding with patches on other particles. Patchy particles are used as a shorthand for modelling anisotropic colloids, proteins and water and for designing approaches to nanoparticle synthesis. Patchy particles range in valency from two or higher. Patchy particles of valency three or more experience liquid-liquid phase separation. Some phase diagrams of patchy particles do not follow the law of rectilinear diameters.

<span class="mw-page-title-main">Polymer soil stabilization</span> Engineering technique

Polymer soil stabilization refers to the addition of polymers to improve the physical properties of soils, most often for geotechnical engineering, construction, or agricultural projects. Even at very small concentrations within soils, various polymers have been shown to increase water retention and reduce erosion, increase soil shear strength, and support soil structure. A wide range of polymers have been used to address problems ranging from the prevention of desertification to the reinforcement of roadbeds.

<span class="mw-page-title-main">Biomolecular condensate</span> Class of membrane-less organelles within biological cells

In biochemistry, biomolecular condensates are a class of membrane-less organelles and organelle subdomains, which carry out specialized functions within the cell. Unlike many organelles, biomolecular condensate composition is not controlled by a bounding membrane. Instead, condensates can form and maintain organization through a range of different processes, the most well-known of which is phase separation of proteins, RNA and other biopolymers into either colloidal emulsions, gels, liquid crystals, solid crystals or aggregates within cells.