Equitable cake-cutting

Last updated

Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

Contents

Where:

See the page on equitability for examples and comparison to other fairness criteria.

Finding an equitable cake-cutting for two partners

One cut - full revelation

When there are 2 partners, it is possible to get an EQ division with a single cut, but it requires full knowledge of the partners' valuations. [1] Assume that the cake is the interval [0,1]. For each , calculate and and plot them on the same graph. Note that the first graph is increasing from 0 to 1 and the second graph is decreasing from 1 to 0, so they have an intersection point. Cutting the cake at that point yields an equitable division. This division has several additional properties:

The same procedure can be used for dividing chores (with negative utility).

Proportional-equitability variant

The full revelation procedure has a variant [3] which satisfies a weaker kind of equitability and a stronger kind of truthfulness. The procedure first finds the median points of each partner. Suppose the median point of partner A is and of partner B is , with . Then, A receives and B receives . Now there is a surplus - . The surplus is divided between the partners in equal proportions. So, for example, if A values the surplus as 0.4 and B values the surplus as 0.2, then A will receive twice more value from than B. So this protocol is not equitable, but it is still EF. It is weakly-truthful in the following sense: a risk-averse player has an incentive to report his true valuation, because reporting an untrue valuation might leave him with a smaller value.

Two cuts - moving knife

Austin moving-knife procedure gives each of the two partners a piece with a subjective value of exactly 1/2. Thus the division is EQ, EX and EF. It requires 2 cuts, and gives one of the partners two disconnected pieces.

Many cuts - full revelation

When more than two cuts are allowed, it is possible to achieve a division which is not only EQ but also EF and PE. Some authors call such a division "perfect". [4]

The minimum number of cuts required for a PE-EF-EQ division depends on the valuations of the partners. In most practical cases (including all cases when the valuations are piecewise-linear) the number of required cuts is finite. In these cases, it is possible to both find the optimal number of cuts and their exact locations. The algorithm requires full knowledge of the partners' valuations. [4]

Run-time

All the above procedures are continuous: the second requires a knife that moves continuously, the others requires a continuous plot of the two value measures. Therefore, they cannot be carried out in a finite number of discrete steps.

This infinity property is characteristic of division problems which require an exact result. See Exact division#Impossibility.

One cut - near-equitable division

A near-equitable division is a division in which the partners' values differ by at most , for any given . A near-equitable division for two partners can be found in finite time and with a single cut. [5]

Finding an equitable division for three or more partners

Moving knife procedure

Austin's procedure can be extended to n partners. It gives each partner a piece with a subjective value of exactly . This division is EQ, but not necessarily EX or EF or PE (since some partners may value the share given to other partners as more than ).

Connected pieces - full revelation

Jones' full revelation procedure can be extended to partners in the following way: [3]

Note that the maximal equitable value must be at least , because we already know that a proportional division (giving each partner at least ) is possible.

If the value measures of the partners are absolutely continuous with respect to each other (this means that they have the same support), then any attempt to increase the value of a partner must decrease the value of another partner. This means that the solution is PE among the solutions which give connected pieces.

Impossibility results

Brams, Jones and Klamler study a division which is EQ, PE and EF (they call such a division "perfect").

They first prove that, for 3 partners that must get connected pieces, an EQ+EF division may not exist. [3] They do this by describing 3 specific value measures on a 1-dimensional cake, in which every EQ allocation with 2 cuts is not EF.

Then they prove that, for 3 or more partners, a PE+EF+EQ division may not exist even with disconnected pieces. [2] They do this by describing 3 specific value measures on a 1-dimensional cake, with the following properties:

Pie cutting

A pie is a cake in the shape of a 1-dimensional circle (see fair pie-cutting).

Barbanel, Brams and Stromquist study the existence of divisions of a pie, which are both EQ and EF. The following existence results are proved without providing a specific division algorithm: [6]

Divisible goods

The adjusted winner procedure calculates an equitable, envy-free and efficient division of a set of divisible goods between two partners.

Query complexity

An equitable cake allocation cannot be found using a finite protocol in the Robertson–Webb query model, even for 2 agents. [7] Moreover, for any ε > 0:

Properties of max-equitable allocation rules

The max-equitable division rule is a rule that selects, from among all equitable cake allocations, the one in which the common value of the agents is maximum. It has two variants:

There always exists a connected max-equitable alloation (both absolute and relative), and it can be found using a generalized moving-knives procedure.

Summary table

NameType# partners# cutsProperties
Jones [1] Full-revelation proc21 (optimal)EQ, EF, 1-PE
Brams-Jones-Klamler [3] Full-revelation procnn1 (optimal)EQ, (n1)-PE
Austin Moving-knife proc22EQ, EF, EX
Austin Moving-knife procnmanyEQ
Barbanel-Brams [4] Full-revelation proc2manyEQ, EF, PE
Cechlárová-Pillárová [5] Discrete approximation proc21 (optimal)near-EQ

See also

Related Research Articles

Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics, dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods.

An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.

Adjusted Winner (AW) is a procedure for envy-free item allocation. Given two agents and some goods, it returns a partition of the goods between the two agents with the following properties:

  1. Envy-freeness: Each agent believes that his share of the goods is at least as good as the other share;
  2. Equitability: The "relative happiness levels" of both agents from their shares are equal;
  3. Pareto-optimality: no other allocation is better for one agent and at least as good for the other agent;
  4. At most one good has to be shared between the agents.

Exact division, also called consensus division, is a partition of a continuous resource ("cake") into some k pieces, such that each of n people with different tastes agree on the value of each of the pieces. For example, consider a cake which is half chocolate and half vanilla. Alice values only the chocolate and George values only the vanilla. The cake is divided into three pieces: one piece contains 20% of the chocolate and 20% of the vanilla, the second contains 50% of the chocolate and 50% of the vanilla, and the third contains the rest of the cake. This is an exact division, as both Alice and George value the three pieces as 20%, 50% and 30% respectively. Several common variants and special cases are known by different terms:

Equitability is a criterion for fair division. A division is called equitable if the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

The Brams–Taylor procedure (BTP) is a procedure for envy-free cake-cutting. It explicated the first finite procedure to produce an envy-free division of a cake among any positive integer number of players.

Fair cake-cutting Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair - each person should receive a piece that he or she believes to be a fair share.

The last diminisher procedure is a procedure for fair cake-cutting. It involves a certain heterogenous and divisible resource, such as a birthday cake, and n partners with different preferences over different parts of the cake. It allows the n people to achieve a proportional division, i.e., divide the cake among them such that each person receives a piece with a value of at least 1/n of the total value according to his own subjective valuation. For example, if Alice values the entire cake as $100 and there are 5 partners then Alice can receive a piece that she values as at least $20, regardless of what the other partners think or do.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

The fair pie-cutting problem is a variation of the fair cake-cutting problem, in which the resource to be divided is circular.

Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.

Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.

In the fair cake-cutting problem, the partners often have different entitlements. For example, the resource may belong to two shareholders such that Alice holds 8/13 and George holds 5/13. This leads to the criterion of weighted proportionality (WPR): there are several weights that sum up to 1, and every partner should receive at least a fraction of the resource by their own valuation.

Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.

When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately-fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.

In computer science, the Robertson–Webb (RW) query model is a model of computation used by algorithms for the problem of fair cake-cutting. In this problem, there is a resource called a "cake", and several agents with different value measures on the cake. The goal is to divide the cake among the agents such that each agent will consider his/her piece as "fair" by his/her personal value measure. Since the agents' valuations can be very complex, they cannot - in general - be given as inputs to a fair division algorithm. The RW model specifies two kinds of queries that a fair division algorithm may ask the agents: Eval and Cut. Informally, an Eval query asks an agent to specify his/her value to a given piece of the cake, and a Cut query asks an agent to specify a piece of cake with a given value.

Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.

References

  1. 1 2 3 Jones, M. A. (2002). "Equitable, Envy-Free, and Efficient Cake Cutting for Two People and Its Application to Divisible Goods". Mathematics Magazine. 75 (4): 275–283. doi:10.2307/3219163. JSTOR   3219163.
  2. 1 2 Steven j. Brams; Michael a. Jones; Christian Klamler (2013). "N-Person Cake-Cutting: There May Be No Perfect Division". The American Mathematical Monthly. 120: 35. doi:10.4169/amer.math.monthly.120.01.035. S2CID   7929917.
  3. 1 2 3 4 Steven J. Brams; Michael A. Jones; Christian Klamler (2007). "Better Ways to Cut a Cake - Revisited" (PDF). Notices of the AMS.
  4. 1 2 3 Barbanel, Julius B.; Brams, Steven J. (2014). "Two-Person Cake Cutting: The Optimal Number of Cuts". The Mathematical Intelligencer. 36 (3): 23. CiteSeerX   10.1.1.361.366 . doi:10.1007/s00283-013-9442-0. S2CID   189867346.
  5. 1 2 3 Cechlárová, Katarína; Pillárová, Eva (2012). "A near equitable 2-person cake cutting algorithm". Optimization. 61 (11): 1321. doi:10.1080/02331934.2011.563306. S2CID   120300612.
  6. Barbanel, J. B.; Brams, S. J.; Stromquist, W. (2009). "Cutting a Pie is Not a Piece of Cake". American Mathematical Monthly. 116 (6): 496. CiteSeerX   10.1.1.579.5005 . doi:10.4169/193009709X470407.
  7. 1 2 Procaccia, Ariel D.; Wang, Junxing (2017-06-20). "A Lower Bound for Equitable Cake Cutting". Proceedings of the 2017 ACM Conference on Economics and Computation. EC '17. Cambridge, Massachusetts, USA: Association for Computing Machinery: 479–495. doi:10.1145/3033274.3085107. ISBN   978-1-4503-4527-9. S2CID   9834718.
  8. Brânzei, Simina; Nisan, Noam (2018-07-13). "The Query Complexity of Cake Cutting". arXiv: 1705.02946 [cs.GT].
  9. Cechlárová, Katarína; Pillárová, Eva (2012-11-01). "On the computability of equitable divisions". Discrete Optimization. 9 (4): 249–257. doi: 10.1016/j.disopt.2012.08.001 . ISSN   1572-5286.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Segal-Halevi, Erel; Sziklai, Balázs R. (2018-09-01). "Resource-monotonicity and population-monotonicity in connected cake-cutting". Mathematical Social Sciences. 95: 19–30. arXiv: 1703.08928 . doi:10.1016/j.mathsocsci.2018.07.001. ISSN   0165-4896. S2CID   16282641.