The fair pie-cutting problem is a variation of the fair cake-cutting problem, in which the resource to be divided is circular.
As an example, consider a birthday cake shaped as a disk. The cake should be divided among several children such that no child envies another child (as in a standard cake-cutting problem), with the additional constraint that the cuts must be radial, so that each child receives a circular sector.
A possible application of the pie model might be for dividing an island’s shoreline into connected lots.
Another possible application is in division of periodic time, such as dividing a daily cycle into "on-call" periods.
A pie is usually modeled as the 1-dimensional interval [0,2π] (or [0,1]), in which the two endpoints are identified.
This model was introduced in 1985 and later in 1993. [1] [2]
Every procedure for fair cake-cutting can also be applied to cutting a pie by just ignoring the fact that the two endpoints are identified. For example, if the cake-cutting procedure yielded a division in which Alice receives [0,1/3] and the George receives [1/3,1], then we would give Alice a circular sector of 120 degrees and George the remaining sector with 240 degrees.
Pie cutting becomes more interesting when we consider questions of efficiency, since in pie-cutting more divisions are possible.
A division is called envy-free (EF) if each partner thinks that his piece is at least as valuable as the other piece.
An EF division of a pie can always be found using divide and choose: one partner cuts the pie into two sectors he considers equal, and the other partner chooses the sector that he considers better. But for a pie, better divisions may be possible.
A division is called Pareto efficient (PE) if no other division is better for one partner and not worse for the other. Often, Pareto efficiency is evaluated only with relation to a subset of all possible divisions. I.e, only divisions to two contiguous sectors (divisions with the minimal number of cuts).
A division is called PEEF if it is both PE and EF.
When the valuations of the partners are (additive) measures, the following moving-knife procedure guarantees a division which is EF, and PE relative to divisions to two contiguous sectors. [3]
One partner (the Rotator) holds two radial knives above the pie in such a way that, in her view, the two sectors of pie determined by these knives each have the same value. She then rotates these knives continuously, all the way around the pie, maintaining this equal value of the sectors until the knives return to their original positions.
The other partner (the Chooser) observes this process during an entire cycle. Then, in the next cycle, he identifies the position that, in his view, gives the maximum value to one of the two sectors so determined. The Chooser receives this sector and the Rotator receives the other sector.
This partition is obviously EF, since the Rotator is indifferent between the two sectors the Chooser receives the better sector. It is PE because there is no partition that would give the Chooser a larger value and leave a value of 1/2 to the Rotator.
The above procedure works only if the value function of the Rotator is additive, so that the equal shares always have the same value of 1/2. If her value is not additive, then the division would still be envy-free but not necessarily Pareto-efficient.
Moreover, when the valuations of both partners are not additive (so none of them can play as the Rotator), a PEEF division does not always exist. [4]
A division is called an exact division (aka consensus division) if the value of piece is exactly according to all partners, where the are pre-specified weights.
Suppose the sum of all weights is 1, and the value of the pie for all agents is normalized to 1 too. By the Stromquist-woodall theorem, for every weight , there is a subset , which is a union of at most sectors, which all partners value at exactly . For agents this implies that there always exists a consensus division of a pie with connected sectors: give agent 1 a sector that is worth exactly for both agents, and give agent 2 the remaining sector, which is worth for both agents (see [5] for an alternative proof).
This can be generalized to any number of agents: each piece except the last one requires at most cuts, so the total number of cuts required is .
A division is called proportional if each of two partners receives a value of at least 1/2. It is called weighted proportional (WPR) if partner receives a value of at least , where are pre-specified weights representing the different entitlements of the partners to the cake. The above procedure shows that in a pie, a WPR division with connected pieces always exists. This is in contrast to a non-circular cake (an interval), in which a WPR with connected pieces might not exist.
If the valuations of the partners are absolutely continuous with respect to each other, then there exists a WPR division which is also weighted-envy-free (WEF) and Pareto efficient (PE), and the ratio between the values of the partners is exactly w1/w2. [5]
Proof. For every angle t, let be the angle in which the ratio
The function is a continuous function of t that achieves a maximum for some . Cut the pie with radial cuts at and , giving the piece to partner #1 and the complement to partner #2. The partition is WEF because the value of each partner is exactly his due share. It is PE because the share of partner #1 is maximized, so it is not possible to give more to partner #2 without harming partner #1.
An equitable division is a division in which the subjective value of both partners is the same (i.e. each partner is equally happy).
There always exists a partition of a pie to two partners, which is both envy-free and equitable. However, currently no procedure is known for finding such a partition. [3]
When the value measures of the partners are absolutely continuous with respect to each other (i.e. every piece which has a positive value for one partner also has a positive value for the other partner), then there exists a partition which is envy-free, equitable and Pareto efficient. Again, no procedure is known. [3]
A division rule is called truthful if reporting the true value functions is a weakly dominant strategy in that rule. I.e., it is not possible to gain any value by mis-representing the valuations.
A division rule is called dictatorial if it allocates the entire cake to a single, pre-specified partner.
A PE division rule is truthful if and only if it is dictatorial. [4]
Iyer and Huhns [6] were the first to present a specialised protocol for dividing a pie. In their protocol, each agent marks (n+1) disjoint pieces on the pie. The algorithm gives each agent one of his/her pieces.
Stromquist moving-knives procedure can be used to cut a cake in 1 dimension, so obviously it can also be used to cut a pie.
But there is a simpler algorithm, that takes advantage of the circularity of the pie. [7] [3]
Partner A rotates three radial knives continuously around the pie, maintaining what s/he believes to be 1/3-1/3-1/3 sectors.
Partner B measures the value of these 3 sectors. Typically they will all have different values, but at one point, two sectors will have the same value. Why? Because after a rotation of 120 degrees, the sector that was previously the most valuable is now less valuable, and another sector is now the most valuable. Hence, by the intermediate value theorem, there must be a position in the rotation when partner B views two sectors as tied for largest. At this point, partner B calls "stop".
The partners then choose sectors in the order: C - B - A. Partner C of course feels no envy because he is the first to choose; partner B has at least one larger sector to choose from; and partner A thinks that all pieces have the same value anyway.
For 3 partners, there exist a pie and corresponding measures for which no allocation is PEEF. [8]
This is also true for more than 3 partners. This is true even if all value functions are additive and strictly positive (i.e. every partner values every single bit of the pie). [3]
Both examples use measures that are nearly uniform, but with very fine adjustments. Since the measures are nearly uniform, it is easy to find allocations of the pie that are almost envy-free and almost undominated. It is not known whether it is possible to find examples in which the discrepancies are much larger.
When there are 3 or more partners with different entitlements, a weighted-proportional (WPR) division is needed. A WPR division with connected pieces does not always exist. [5]
This is analogous to an impossibility result for 1-dimensional interval cake and 2 partners (see proportional cake-cutting with different entitlements).
In game theory, fair division is the problem of dividing a set of resources among several people who have an entitlement to them, such that each person receives their due share. This problem arises in various real-world settings, such as: division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. This is an active research area in mathematics, economics, dispute resolution, and more. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods.
An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.
Divide and choose is a procedure for fair division of a continuous resource, such as a cake, between two parties. It involves a heterogeneous good or resource and two partners who have different preferences over parts of the cake. The protocol proceeds as follows: one person cuts the cake into two pieces; the other person selects one of the pieces; the cutter receives the remaining piece.
The Stromquist moving-knives procedure is a procedure for envy-free cake-cutting among three players. It is named after Walter Stromquist who presented it in 1980.
The Austin moving-knife procedures are procedures for equitable division of a cake. They allocate each of n partners, a piece of the cake which this partner values as exactly of the cake. This is in contrast to proportional division procedures, which give each partner at least of the cake, but may give more to some of the partners.
Chore division is a fair division problem in which the divided resource is undesirable, so that each participant wants to get as little as possible. It is the mirror-image of the fair cake-cutting problem, in which the divided resource is desirable so that each participant wants to get as much as possible. Both problems have heterogeneous resources, meaning that the resources are nonuniform. In cake division, cakes can have edge, corner, and middle pieces along with different amounts of frosting. Whereas in chore division, there are different chore types and different amounts of time needed to finish each chore. Similarly, both problems assume that the resources are divisible. Chores can be infinitely divisible, because the finite set of chores can be partitioned by chore or by time. For example, a load of laundry could be partitioned by the number of articles of clothing and/or by the amount of time spent loading the machine. The problems differ, however, in the desirability of the resources. The chore division problem was introduced by Martin Gardner in 1978.
An exact division, also called even division or consensus division, is a division of a heterogeneous resource ("cake") to several subsets such that each of n people with different tastes agree about the valuations of the pieces.
Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair - each person should receive a piece that he or she believes to be a fair share.
Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:
Group envy-freeness is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.
Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:
Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.
Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.
In the fair cake-cutting problem, the partners often have different entitlements. For example, the resource may belong to two shareholders such that Alice holds 8/13 and George holds 5/13. This leads to the criterion of weighted proportionality (WPR): there are several weights that sum up to 1, and every partner should receive at least a fraction of the resource by their own valuation.
The Levmore–Cook moving-knives procedure is a procedure for envy-free cake-cutting among three partners. It is named after Saul X. Levmore and Elizabeth Early Cook who presented it in 1981. It assumes that the cake is two-dimensional. It requires two knives and four cuts, so some partners may receive disconnected pieces.
The Robertson–Webb rotating-knife procedure is a procedure for envy-free cake-cutting of a two-dimensional cake among three partners. It makes only two cuts, so each partner receives a single connected piece.
The Barbanel–Brams rotating-knife procedure is a procedure for envy-free cake-cutting of a cake among three partners. It makes only two cuts, so each partner receives a single connected piece.
Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure.
Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.