Esquisse d'un Programme

Last updated

"Esquisse d'un Programme" (Sketch of a Programme) is a famous proposal for long-term mathematical research made by the German-born, French mathematician Alexander Grothendieck in 1984. [1] He pursued the sequence of logically linked ideas in his important project proposal from 1984 until 1988, but his proposed research continues to date to be of major interest in several branches of advanced mathematics. Grothendieck's vision provides inspiration today for several developments in mathematics such as the extension and generalization of Galois theory, which is currently being extended based on his original proposal.

Contents

Brief history

Submitted in 1984, the Esquisse d'un Programme [2] [3] was a proposal submitted by Alexander Grothendieck for a position at the Centre National de la Recherche Scientifique. The proposal was not successful, but Grothendieck obtained a special position where, while keeping his affiliation at the University of Montpellier, he was paid by the CNRS and released of his teaching obligations. Grothendieck held this position from 1984 till 1988. [4] [5] This proposal was not formally published until 1997, because the author "could not be found, much less his permission requested". [6] The outlines of dessins d'enfants , or "children's drawings", and "anabelian geometry", that are contained in this manuscript continue to inspire research; thus, "Anabelian geometry is a proposed theory in mathematics, describing the way the algebraic fundamental group G of an algebraic variety V, or some related geometric object, determines how V can be mapped into another geometric object W, under the assumption that G is not an abelian group, in the sense of being strongly noncommutative. The idea of anabelian (an alpha privative an- before abelian), first introduced in Letter to Faltings (June 27, 1983), [7] is developed in Esquisse d'un Programme. While the work of Grothendieck was for many years unpublished, and unavailable through the traditional formal scholarly channels, the formulation and predictions of the proposed theory received much attention, and some alterations, at the hands of a number of mathematicians. Those who have researched in this area have obtained some expected and related results, and in the 21st century the beginnings of such a theory started to be available."

Abstract of Grothendieck's programme

("Sommaire")

Suggested further reading for the interested mathematical reader is provided in the References section.

Extensions of Galois's theory for groups: Galois groupoids, categories and functors

Galois developed a powerful, fundamental algebraic theory in mathematics that provides very efficient computations for certain algebraic problems by utilizing the algebraic concept of groups, which is now known as the theory of Galois groups; such computations were not possible before, and also in many cases are much more effective than the 'direct' calculations without using groups. [10] To begin with, Alexander Grothendieck stated in his proposal: "Thus, the group of Galois is realized as the automorphism group of a concrete, pro-finite group which respects certain structures that are essential to this group." This fundamental, Galois group theory in mathematics has been considerably expanded, at first to groupoids—as proposed in Alexander Grothendieck's Esquisse d' un Programme (EdP)—and now already partially carried out for groupoids; the latter are now further developed beyond groupoids to categories by several groups of mathematicians. Here, we shall focus only on the well-established and fully validated extensions of Galois' theory. Thus, EdP also proposed and anticipated, along with Grothendieck's previous IHÉS seminars (SGA1 to SGA4) held in the 1960s, the development of even more powerful extensions of the original Galois's theory for groups by utilizing categories, functors and natural transformations, as well as further expansion of the manifold of ideas presented in Alexander Grothendieck's Descent Theory . The notion of motive has also been pursued actively. This was developed into the motivic Galois group, Grothendieck topology and Grothendieck category. Such developments were recently extended in algebraic topology via representable functors and the fundamental groupoid functor.

See also

Related Research Articles

<span class="mw-page-title-main">Alexander Grothendieck</span> French mathematician (1928–2014)

Alexander Grothendieck, later Alexandre Grothendieck in French was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.

<span class="mw-page-title-main">Jean-Pierre Serre</span> French mathematician

Jean-Pierre Serre is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003.

In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s.

In mathematics, the Séminaire de Géométrie Algébrique du Bois Marie (SGA) was an influential seminar run by Alexander Grothendieck. It was a unique phenomenon of research and publication outside of the main mathematical journals that ran from 1960 to 1969 at the IHÉS near Paris. The seminar notes were eventually published in twelve volumes, all except one in the Springer Lecture Notes in Mathematics series.

<i>Éléments de géométrie algébrique</i>

The Éléments de géométrie algébrique by Alexander Grothendieck, or EGA for short, is a rigorous treatise, in French, on algebraic geometry that was published from 1960 through 1967 by the Institut des Hautes Études Scientifiques. In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation stone and basic reference of modern algebraic geometry.

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".

The Séminaire Nicolas Bourbaki is a series of seminars that has been held in Paris since 1948. It is one of the major institutions of contemporary mathematics, and a barometer of mathematical achievement, fashion, and reputation. It is named after Nicolas Bourbaki, a group of French and other mathematicians of variable membership.

Fondements de la Géometrie Algébrique (FGA) is a book that collected together seminar notes of Alexander Grothendieck. It is an important source for his pioneering work on scheme theory, which laid foundations for algebraic geometry in its modern technical developments. The title is a translation of the title of André Weil's book Foundations of Algebraic Geometry. It contained material on descent theory, and existence theorems including that for the Hilbert scheme. The Technique de descente et théorèmes d'existence en géometrie algébrique is one series of seminars within FGA.

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

Anabelian geometry is a theory in number theory which describes the way in which the algebraic fundamental group G of a certain arithmetic variety X, or some related geometric object, can help to recover X. The first results for number fields and their absolute Galois groups were obtained by Jürgen Neukirch, Masatoshi Gündüz Ikeda, Kenkichi Iwasawa, and Kôji Uchida, prior to conjectures made about hyperbolic curves over number fields by Alexander Grothendieck. As introduced in Esquisse d'un Programme the latter were about how topological homomorphisms between two arithmetic fundamental groups of two hyperbolic curves over number fields correspond to maps between the curves. A first version of Grothendieck's anabelian conjecture was solved by Hiroaki Nakamura and Akio Tamagawa, then completed by Shinichi Mochizuki.

<span class="mw-page-title-main">Luc Illusie</span> French mathemtician

Luc Illusie is a French mathematician, specializing in algebraic geometry. His most important work concerns the theory of the cotangent complex and deformations, crystalline cohomology and the De Rham–Witt complex, and logarithmic geometry. In 2012, he was awarded the Émile Picard Medal of the French Academy of Sciences.

In anabelian geometry, a branch of algebraic geometry, the section conjecture gives a conjectural description of the splittings of the group homomorphism , where is a complete smooth curve of genus at least 2 over a field that is finitely generated over , in terms of decomposition groups of rational points of . The conjecture was introduced by Alexander Grothendieck in a 1983 letter to Gerd Faltings.

In mathematics, the Grothendieck–Teichmüller groupGT is a group closely related to the absolute Galois group of the rational numbers. It was introduced by Vladimir Drinfeld and named after Alexander Grothendieck and Oswald Teichmüller, based on Grothendieck's suggestion in his 1984 essay Esquisse d'un Programme to study the absolute Galois group of the rationals by relating it to its action on the Teichmüller tower of Teichmüller groupoids Tg,n, the fundamental groupoids of moduli stacks of genus g curves with n points removed. There are several minor variations of the group: a discrete version, a pro-l version, a k-pro-unipotent version, and a profinite version; the first three versions were defined by Drinfeld, and the version most often used is the profinite version.

<span class="mw-page-title-main">Leila Schneps</span> American mathematician and novelist

Leila Schneps is an American mathematician and fiction writer at the Centre national de la recherche scientifique working in number theory. Schneps has written general audience math books and, under the pen name Catherine Shaw, has written mathematically themed murder mysteries.

<span class="mw-page-title-main">Siegel modular variety</span> Algebraic variety that is a moduli space for principally polarized abelian varieties

In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943.

Michèle Raynaud is a French mathematician, who works on algebraic geometry and who worked with Alexandre Grothendieck in Paris in the 1960s at the Institut des hautes études scientifiques (IHÉS).

In mathematics, a tame topology is a hypothetical topology proposed by Alexander Grothendieck in his research program Esquisse d’un programme under the French name topologie modérée. It is a topology in which the theory of dévissage can be applied to stratified structures such as semialgebraic or semianalytic sets, and which excludes some pathological spaces that do not correspond to intuitive notions of spaces.

References

  1. Scharlau, Winifred (September 2008), written at Oberwolfach, Germany, "Who is Alexander Grothendieck", Notices of the American Mathematical Society (Providence, RI: American Mathematical Society) 55(8): 930–941, ISSN   1088-9477, OCLC   34550461, http://www.ams.org/notices/200808/tx080800930p.pdf
  2. Alexander Grothendieck, 1984. "Esquisse d'un Programme", (1984 manuscript), finally published in Schneps and Lochak (1997, I), pp.5-48; English transl., ibid., pp. 243-283. MR 1483107
  3. "Sketch of a programme (English translation, hosted by the University of Extremadura)" (PDF). Retrieved October 28, 2012.
  4. Rehmeyer, Julie (May 9, 2008), "Sensitivity to the Harmony of Things", Science News
  5. Jackson, Allyn (November, 2004) "Comme Appelé du Néant - As if summoned from the void: the life of Alexandre Grothendieck", Notices of the AMS
  6. Schneps and Lochak (1997, I) p.1
  7. Alexandre Grothendieck, "Letter to G. Faltings (translation into English), June 27, 1983", Geometry Galois Actions (1.Around Grothendieck's Esquisse d'un Programme) The London Mathematical Society: 285-293, https://www.cambridge.org/core/books/geometric-galois-actions/letter-to-g-faltings-translation-into-english/40DF62D52D03CB79DD15DCEA24D85368 (1997)
  8. "The origins of Alexander Grothendieck's 'Pursuing Stacks'". Archived from the original on 2012-07-22. Retrieved 2008-10-03.
  9. Cartier, Pierre (2001), "A mad day's work: from Grothendieck to Connes and Kontsevich The evolution of concepts of space and symmetry", Bull. Amer. Math. Soc. 38(4): 389–408, <http://www.ams.org/bull/2001-38-04/S0273-0979-01-00913-2/S0273-0979-01-00913-2.pdf>. An English translation of Cartier (1998)
  10. Cartier, Pierre (1998), "La Folle Journée, de Grothendieck à Connes et Kontsevich — Évolution des Notions d'Espace et de Symétrie", Les Relations entre les Mathématiques et la Physique Théorique — Festschrift for the 40th anniversary of the IHÉS, Institut des Hautes Études Scientifiques, pp. 11–19