Ethics of nanotechnologies

Last updated

Ethics of nanotechnology is the study of the ethical issues emerging from advances in nanotechnology and its impacts.

Contents

According to Andrew Chen, ethical concerns about nanotechnologies should include the possibility of their military applications, the dangers posed by self-replicant nanomachines, and their use for surveillance monitoring and tracking. [1] Risks to environment to public health are treated in a report from the Dutch National Institute for Public Health and the Environment [2] as well as is a report of the European Environment Agency. [3] Academic works on ethics of nanotechnology can be found in the journal Nanoethics.

Guidelines

According to the Markkula Center for Applied Ethics [1] possible guidelines for an Ethics of nanotechnology could include:

Concerns

Ethical concern about nanotechnology include the opposition to their use to fabricate Lethal autonomous weapon, and the fear that they may self replicate ad infinitum in a so-called gray goo scenario, first imagined by K. Eric Drexler. [4] For the EEA [3] the challenge posed by nano-materials are due to their properties of being novel, biopersistent, readily dispersed, and bioaccumulative; by analogy, thousands cases of mesothelioma were caused by the inhalation of asbestos dust. See nanotoxicology. Nanotechnology belongs to the class of emerging technology known as GRIN: geno-, robo-, info- nano-technologies. Another common acronym is NBIC (Nanotechnology, Biotechnology, Information Technology, and Cognitive Science). These technologies are hoped [5] - or feared, [6] depending on the viewpoint, to be leading to improving human bodies and functionalities, see transhumanism. The possible application of nanotechnology in human genome sequencing (eg. Nanopores based sequencing) raises further ethical and societal concerns. [7]

Further reading

See also

Related Research Articles

<span class="mw-page-title-main">Foresight Institute</span> American research non-profit organization

The Foresight Institute (Foresight) is a San Francisco-based research non-profit that promotes the development of nanotechnology and other emerging technologies, such as safe AGI, biotech and longevity.

<span class="mw-page-title-main">K. Eric Drexler</span> American engineer

Kim Eric Drexler is an American engineer best known for introducing molecular nanotechnology (MNT), and his studies of its potential from the 1970s and 1980s. His 1991 doctoral thesis at Massachusetts Institute of Technology was revised and published as the book Nanosystems: Molecular Machinery Manufacturing and Computation (1992), which received the Association of American Publishers award for Best Computer Science Book of 1992. He has been called the "godfather of nanotechnology".

<span class="mw-page-title-main">Molecular nanotechnology</span> Technology

Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products, this advanced form of nanotechnology would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology was defined by the National Nanotechnology Initiative as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. The definition of nanotechnology is inclusive of all types of research and technologies that deal with these special properties. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. An earlier description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

Gray goo is a hypothetical global catastrophic scenario involving molecular nanotechnology in which out-of-control self-replicating machines consume all biomass on Earth while building many more of themselves, a scenario that has been called ecophagy(the literal consumption of the ecosystem). The original idea assumed machines were designed to have this capability, while popularizations have assumed that machines might somehow gain this capability by accident.

<span class="mw-page-title-main">Molecular assembler</span> Proposed nanotechnological device

A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.

<span class="mw-page-title-main">Nanorobotics</span> Emerging technology field

Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.

The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.

The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications.

The Feynman Prize in Nanotechnology is an award given by the Foresight Institute for significant advances in nanotechnology. Two prizes are awarded annually, in the categories of experimental and theoretical work. There is also a separate challenge award for making a nanoscale robotic arm and 8-bit adder.

The following outline is provided as an overview of and topical guide to nanotechnology:

<span class="mw-page-title-main">Nanomechanics</span>

Nanomechanics is a branch of nanoscience studying fundamental mechanical properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. As an area of nanoscience, nanomechanics provides a scientific foundation of nanotechnology.

Because of the ongoing controversy on the implications of nanotechnology, there is significant debate concerning whether nanotechnology or nanotechnology-based products merit special government regulation. This mainly relates to when to assess new substances prior to their release into the market, community and environment.

The societal impact of nanotechnology are the potential benefits and challenges that the introduction of novel nanotechnological devices and materials may hold for society and human interaction. The term is sometimes expanded to also include nanotechnology's health and environmental impact, but this article will only consider the social and political impact of nanotechnology.

Amanda Susan Barnard is an Australian theoretical physicist working in predicting the real world behavior of nanoparticles using analytical models and supercomputer simulations and applied machine learning. Barnard is a pioneer in the thermodynamic cartography of nanomaterials, creating nanoscale phase diagrams relevant to different environmental conditions, and relating these to structure/property maps. Her current research involves developing and applying statistical methods and machine/deep learning in nanoscience and nanotechnology, and materials and molecular informatics. In 2014 she became the first person in the southern hemisphere, and the first woman, to win the Feynman Prize in Nanotechnology, which she won for her work on diamond nanoparticles.

<span class="mw-page-title-main">Interdisciplinary Nanoscience Center</span>

Interdisciplinary Nanoscience Center (iNANO), is an interdisciplinary research and teaching center for nanoscience at Aarhus University in Aarhus, Denmark. The center was founded in 2002 and has been headquartered in The iNano House since 2012.

The International Center for Technology Assessment (ICTA) is a U.S. non-profit bi-partisan organization, based in Washington, D.C.

<span class="mw-page-title-main">Tunable resistive pulse sensing</span>

Tunable Resistive Pulse Sensing (TRPS) is a single-particle technique used to measure the size, concentration and zeta potential of particles as they pass through a size-tunable nanopore.

<span class="mw-page-title-main">Nanotechnology in warfare</span> Branch of nanoscience

Nanotechnology in warfare is a branch of nano-science in which molecular systems are designed, produced and created to fit a nano-scale (1-100 nm). The application of such technology, specifically in the area of warfare and defence, has paved the way for future research in the context of weaponisation. Nanotechnology unites a variety of scientific fields including material science, chemistry, physics, biology and engineering.

References

  1. 1 2 Chen, Andrew (3 March 2002). "The Ethics of Nanotechnology". Santa Clarita University. Retrieved 23 September 2021.
  2. 1 2 3 E.A.J. Bleeker, S. Evertz, R.E. Geertsma, W.J.G.M. Peijnenburg, J. Westra, S.W.P. Wijnhoven, Assessing health & environmental risks of nanoparticles. Current state of affairs in policy, science and areas of application, RIVM Report 2014-0157.
  3. 1 2 3 Chapter 22, Nanotechnology: early lessons from early warnings, in Late lessons from early warnings: science, precaution, innovation, EEA report 1, 2013.
  4. Drexler, K. Eric. (1986). Engines of creation (1st ed.). Garden City, N.Y.: Anchor Press/Doubleday. ISBN   0-385-19972-4. OCLC   12752328.
  5. Roco, M.C., and Bainbridge, W.S. (eds) (2002) Converging technologies for improving human performance, NSF-DOC Report, Kluwer, 2003.
  6. G. Tintino, "From Darwinian to technological evolution: Forgetting the human lottery", Cuad. Bioética, vol. XXV, no. 387–395, 2014.
  7. Sajeer P, Muhammad (2023-03-29). "Disruptive technology: Exploring the ethical, legal, political, and societal implications of nanopore sequencing technology". EMBO Reports: e56619. doi:10.15252/embr.202256619. ISSN   1469-221X. PMID   36988424. S2CID   257803254.
  8. Steffen Foss Hansen, Andrew Maynard, Anders Baun and Joel A. Tickner, 2008, Late lessons from early warnings for nanotechnology, Nature Nanotechnology, Vol. 3, 444-447.
  9. Rene von Schomberg (2011), Introduction: Towards Responsible Research and Innovation in the Information and Communication Technologies and Security Technologies Fields.
  10. Cargo Cult Science, Commencement Speech at Caltech 1974.
  11. R. Feynman, 1997, Surely You're Joking, Mr. Feynman!, W. W. Norton & Company.
  12. Commission recommendation on A code of conduct for responsible nanosciences and nanotechnologies research & Council conclusions on Responsible nanosciences and nanotechnologies research, ISBN   978-92-79-11605-6, Luxembourg.
  13. Final Report of the PABE research project funded by the Commission of European Communities, 2001.
  14. Chapter 16, Nano Ethics, In: Nanotechnology in the Agri‐Food Sector: Implications for the Future, Editors:Lynn J. Frewer, Willem Norde, Arnout Fischer, Frans Kampers, Wiley.
  15. There's Plenty of Room at the Bottom, a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959.
  16. Timmermans, Job; Zhao, Yinghuan; van den Hoven, Jeroen (2011-12-01). "Ethics and Nanopharmacy: Value Sensitive Design of New Drugs". NanoEthics. 5 (3): 269–283. doi:10.1007/s11569-011-0135-x. ISSN   1871-4765. PMC   3250608 . PMID   22247745.
  17. Umbrello, Steven; Baum, Seth D. (2018-06-01). "Evaluating future nanotechnology: The net societal impacts of atomically precise manufacturing". Futures. 100: 63–73. doi:10.1016/j.futures.2018.04.007. hdl: 2318/1685533 . ISSN   0016-3287. S2CID   158503813.
  18. Eric Drexler, K. (2017-06-27). Radical Abundance. ISBN   9781610391146.