Event structure

Last updated

In mathematics and computer science, an event structure describes sequences of events that can be triggered by combinations of other events, with certain forbidden combinations of events. Different sources provide more or less flexible mathematical formalizations of the way events can be triggered and which combinations are forbidden.

The most general of these formalizations is given by Glynn Winskel. Winskel formalizes an event structure can be formalized as a triple , in which:

According to Winskel's definitions, a configuration of an event structure is a subset of all of whose finite subsets are consistent and whose events are all secured. Here, an event is secured when it belongs to a finite sequence of events from the configuration, each of which is enabled by the subset of earlier events from the same sequence. [1]

The nlab simplifies these definitions in two ways:

For the event structures with both simplifications, which nlab calls prime event structures, the configurations are the downward-closed subsets of the partial order that include no incompatible pairs. [2]

See also

Related Research Articles

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

<span class="mw-page-title-main">Pushdown automaton</span> Type of automaton

In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

<span class="mw-page-title-main">Petri net</span> Model to describe distributed systems

A Petri net, also known as a place/transition net, is one of several mathematical modeling languages for the description of distributed systems. It is a class of discrete event dynamic system. A Petri net is a directed bipartite graph that has two types of elements: places and transitions. Place elements are depicted as white circles and transition elements are depicted as rectangles. A place can contain any number of tokens, depicted as black circles. A transition is enabled if all places connected to it as inputs contain at least one token. Some sources state that Petri nets were invented in August 1939 by Carl Adam Petri—at the age of 13—for the purpose of describing chemical processes.

In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.

In set theory and related branches of mathematics, a family can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class.

Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.

In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than ".

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

In category theory, a branch of mathematics, for every object in every category where the product exists, there exists the diagonal morphism

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In domain theory, a branch of mathematics and computer science, a Scott information system is a primitive kind of logical deductive system often used as an alternative way of presenting Scott domains.

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and , then
  3. If and , then

Forcing in computability theory is a modification of Paul Cohen's original set-theoretic technique of forcing to deal with computability concerns.

An abstract family of acceptors (AFA) is a grouping of generalized acceptors. Informally, an acceptor is a device with a finite state control, a finite number of input symbols, and an internal store with a read and write function. Each acceptor has a start state and a set of accepting states. The device reads a sequence of symbols, transitioning from state to state for each input symbol. If the device ends in an accepting state, the device is said to accept the sequence of symbols. A family of acceptors is a set of acceptors with the same type of internal store. The study of AFA is part of AFL (abstract families of languages) theory.

In topology, constructible sets are a class of subsets of a topological space that have a relatively "simple" structure. They are used particularly in algebraic geometry and related fields. A key result known as Chevalley's theorem in algebraic geometry shows that the image of a constructible set is constructible for an important class of mappings (more specifically morphisms) of algebraic varieties . In addition, a large number of "local" geometric properties of schemes, morphisms and sheaves are (locally) constructible. Constructible sets also feature in the definition of various types of constructible sheaves in algebraic geometry and intersection cohomology.

In mathematics, the effective topos introduced by Martin Hyland captures the mathematical idea of effectivity within the category theoretical framework.

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

References

  1. Winskel, Glynn (1986), "Event structures" (PDF), in Brauer, Wilfried; Reisig, Wolfgang; Rozenberg, Grzegorz (eds.), Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986, Lecture Notes in Computer Science, vol. 255, Springer, pp. 325–392, doi:10.1007/3-540-17906-2_31, ISBN   978-3-540-17906-1
  2. Event structure at the nLab