FDOA

Last updated

Frequency difference of arrival (FDOA) or differential Doppler (DD), is a technique analogous to TDOA for estimating the location of a radio emitter based on observations from other points. (It can also be used for estimating one's own position based on observations of multiple emitters). TDOA and FDOA are sometimes used together to improve location accuracy and the resulting estimates are somewhat independent. By combining TDOA and FDOA measurements, instantaneous geolocation can be performed in two dimensions.

It differs from TDOA in that the FDOA observation points must be in relative motion with respect to each other and the emitter. This relative motion results in different doppler shifts observations of the emitter at each location in general. The relative motion can be achieved by using airborne observations in aircraft, for example. The emitter location can then be estimated with knowledge of the observation points' location and vector velocities and the observed relative doppler shifts between pairs of locations.

The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

A disadvantage of FDOA is that large amounts of data must be moved between observation points or to a central location to do the cross-correlation that is necessary to estimate the doppler shift.

Cross-correlation measure of similarity of two series as a function of the displacement of one relative to the other

In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology.

The accuracy of the location estimate is related to the bandwidth of the emitter's signal, the signal-to-noise ratio at each observation point, and the geometry and vector velocities of the emitter and the observation points.

In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

See also

Further reading

Digital object identifier Character string used as a permanent identifier for a digital object, in a format controlled by the International DOI Foundation

In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to uniquely identify objects, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.


Related Research Articles

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. Doppler radars are used in aviation, sounding satellites, Major League Baseball's StatCast system, meteorology, radar guns, radiology and healthcare, and bistatic radar.

Time of flight (ToF) is the measurement of the time taken by an object, particle or wave to travel a distance through a medium. This information can then be used to establish a time standard, as a way to measure velocity or path length, or as a way to learn about the particle or medium's properties. The traveling object may be detected directly or indirectly.

Relativistic Doppler effect

The relativistic Doppler effect is the change in frequency of light, caused by the relative motion of the source and the observer, when taking into account effects described by the special theory of relativity.

Satellite geodesy geodesy by means of artificial satellites

Satellite geodesy is geodesy by means of artificial satellites — the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

Pulse-Doppler radar radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

Radiolocating is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position. Both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

An acoustic Doppler current profiler (ADCP) is a hydroacoustic current meter similar to a sonar, used to measure water current velocities over a depth range using the Doppler effect of sound waves scattered back from particles within the water column. The term ADCP is a generic term for all acoustic current profilers, although the abbreviation originates from an instrument series introduced by RD Instruments in the 1980s. The working frequencies range of ADCPs range from 38 kHz to several Megahertz. The device used in the air for wind speed profiling using sound is known as SODAR and works with the same underlying principles.

Multilateration is a navigation and surveillance technique based on the measurement of the times of arrival (TOAs) of energy waves having a known propagation speed. The time origin for the TOAs is arbitrary. For surveillance, a subject of interest – in cooperative surveillance, often a vehicle – transmits to multiple receiving stations having synchronized 'clocks'. For navigation, multiple synchronized stations transmit to a user receiver. To find the coordinates of a user in n dimensions, at least n + 1 TOAs must be measured. Multilateration systems are also called hyperbolic systems, for reasons discussed below.

Acoustic location the general use of sound to locate objects

Acoustic location is the use of sound to determine the distance and direction of its source or reflector. Location can be done actively or passively, and can take place in gases, liquids, and in solids.

Doppler echocardiography

Doppler echocardiography is a procedure that uses Doppler ultrasonography to examine the heart. An echocardiogram uses high frequency sound waves to create an image of the heart while the use of Doppler technology allows determination of the speed and direction of blood flow by utilizing the Doppler effect.

Orbit determination

Orbit determination is the estimation of orbits of objects such as moons, planets, and spacecraft. One major application is to allow tracking newly observed asteroids and verify that they have not been previously discovered. The basic methods were discovered in the 17th century and have been continuously refined.

Doppler spectroscopy

Doppler spectroscopy is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

Coastal ocean dynamics applications radar

Coastal ocean dynamics applications radar (CODAR) describes a type of portable, land-based, High Frequency (HF) radar developed between 1973 and 1983 at NOAA's Wave Propagation Laboratory in Boulder, Colorado. CODAR is a noninvasive system that permits to measure and map near-surface ocean currents in coastal waters. It is transportable and offers output ocean current maps on site in near real time. Moreover, using CODAR it is possible to measure waves heights and it provides an indirect estimate of local wind direction.

Wave radar Technology for measuring surface waves on water

Wind waves can be measured by several radar remote sensing techniques. Several instruments based on a variety of different concepts and techniques are available, and these are all often called wave radars. This article, gives a brief description of the most common ground-based radar remote sensing techniques.

Wi-Fi positioning system (WPS) or WiPS/WFPS is a geolocation system that uses the characteristics of nearby Wi-Fi hotspots and other wireless access points to discover where a device is located. It is used where satellite navigation such as GPS is inadequate due to various causes including multipath and signal blockage indoors, or where acquiring a satellite fix would take too long. Such systems include indoor positioning systems. Wi-Fi positioning takes advantage of the rapid growth in the early 21st century of wireless access points in urban areas.

Enhanced Observed Time Difference (E-OTD) is a standard for the location of mobile telephones. The location method works by multilateration. The standardisation was first carried out for GSM by the GSM standard committees in LCS Release 98 and Release 99. The standardisation was continued for 3G and WCDMA mobile telephones by 3GPP.

Satellite geolocation is the process of locating the origin of a signal appearing on a satellite communication channel. Typically, this process is used to mitigate interference on communication satellites. Usually, these interference signals are caused by human error or equipment failure, but can also be caused by deliberate jamming. Identifying the geographical location of an interfering signal informs the mitigation activity.

A laser surface velocimeter (LSV) is a non-contact optical speed sensor measuring velocity and length on moving surfaces. Laser surface velocimeters use the laser Doppler principle to evaluate the laser light scattered back from a moving object. They are widely used for process and quality control in industrial production processes.

Channel sounding is a technique that evaluates the radio environment for wireless communication, especially MIMO systems. Because of the effect of terrain and obstacles, wireless signals propagate in multiple paths. To minimize or use the multipath effect, engineers use channel sounding to process the multidimensional spatial-temporal signal and estimate channel characteristics. This helps simulate and design wireless systems.