FFC Cambridge process

Last updated

The FFC Cambridge process is an electrochemical method for producing Titanium (Ti) from titanium oxide by electrolysis in molten calcium salts. It is thought that this process will eventually be capable of producing titanium more efficiently than by current conventional processes. [1]

Contents

History

A process for electrochemical production of titanium was described in a 1904 German patent. [2] [3] [1] In solution of molten CaCl2, titanium dioxide (TiO2) has been reduced electrolytically to the metal. [4]

The FFC Cambridge process was developed by George Chen, Derek Fray, and Thomas Farthing between 1996 and 1997 at the University of Cambridge. (The name FFC derives from the first letters of the last names of the inventors). [5] The intellectual property relating to the technology has been acquired by Metalysis, (Sheffield, UK).[ citation needed ]

Process

The process typically takes place between 900 and 1100 °C, with an anode (typically carbon) and a cathode (oxide being reduced) in a solution of molten CaCl2. Depending on the nature of the oxide it will exist at a particular potential relative to the anode, which is dependent on the quantity of CaO present in CaCl2.

Cathode reaction mechanism

The electrocalciothermic reduction mechanism may be represented by the following sequence of reactions, where "M" represents a metal to be reduced (typically titanium).

(1) MO
x
+ x Ca → M + x CaO

When this reaction takes place on its own, it is referred to as the "calciothermic reduction" (or, more generally, an example of metallothermic reduction). For example, if the cathode was primarily made from TiO then calciothermic reduction would appear as:

TiO + Ca → Ti + CaO

Whilst the cathode reaction can be written as above it is in fact a gradual removal of oxygen from the oxide. For example, it has been shown that TiO2 does not simply reduce to Ti. It, in fact, reduces through the lower oxides (Ti3O5, Ti2O3, TiO etc.) to Ti.

The calcium oxide produced is then electrolyzed:

(2a) x CaO → x Ca2+ + x O2−
(2b) x Ca2+ + 2x ex Ca

and

(2c) x O2−x/2 O2 + 2x e

Reaction (2b) describes the production of Ca metal from Ca2+ ions within the salt, at the cathode. The Ca would then proceed to reduce the cathode.

The net result of reactions (1) and (2) is simply the reduction of the oxide into metal plus oxygen:

(3) MO
x
→ M + x/2 O2

Anode reaction mechanism

The use of molten CaCl2 is important because this molten salt can dissolve and transport the "O2−" ions to the anode to be discharged. The anode reaction depends on the material of the anode. Depending on the system it is possible to produce either CO or CO2 or a mixture at the carbon anode:

C + 2O2− → CO2 +4
e
C + O2− → CO + 2
e

However, if an inert anode is used, such as that of high density SnO2, the discharge of the O2− ions leads to the evolution of oxygen gas. However the use of an inert anode has disadvantages. Firstly, when the concentration of CaO is low, Cl2 evolution at the anode becomes more favourable. In addition, when compared to a carbon anode, more energy is required to achieve the same reduced phase at the cathode. Inert anodes suffer from stability issues.

2O2− → O2 + 4
e

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, likewise, reduction is the gain of electrons or a decrease in the oxidation state.

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient. Examples of substances that are commonly reducing agents include the Earth metals, formic acid, oxalic acid, and sulfite compounds.

<span class="mw-page-title-main">Electrolytic cell</span> Cell that uses electrical energy to drive a non-spontaneous redox reaction

An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy [voltage applied between two electrodes i.e. anode and cathode ] to drive a chemical reaction that would not otherwise occur. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e, the Gibbs free energy remains -ve, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e, the Gibbs free energy is +ve.

<span class="mw-page-title-main">Strontium titanate</span> Chemical compound

Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric. It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics.

The chloralkali process is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide, which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.

<span class="mw-page-title-main">Titanium diboride</span> Chemical compound

Titanium diboride (TiB2) is an extremely hard ceramic which has excellent heat conductivity, oxidation stability and wear resistance. TiB2 is also a reasonable electrical conductor, so it can be used as a cathode material in aluminium smelting and can be shaped by electrical discharge machining.

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production.

<span class="mw-page-title-main">Pitting corrosion</span> Form of insidious localized corrosion in which a pit develops at the anode site

Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.

Carbothermic reactions involve the reduction of substances, often metal oxides, using carbon as the reducing agent. These chemical reactions are usually conducted at temperatures of several hundred degrees Celsius. Such processes are applied for production of the elemental forms of many elements. The ability of metals to participate in carbothermic reactions can be predicted from Ellingham diagrams.

Calciothermic reactions are metallothermic reduction reactions which use calcium metal as the reducing agent at high temperature.

<span class="mw-page-title-main">Downs cell</span> An electrochemical method for production of elemental metallic alkaline earth

The Downs' process is an electrochemical method for the commercial preparation of metallic magnesium or sodium, in which molten magnesium chloride (MgCl2) or sodium chloride (NaCl) is electrolyzed in a special apparatus called the Downs cell. The Downs cell was invented in 1922 (patented: 1924) by the American chemist James Cloyd Downs (1885–1957).

<span class="mw-page-title-main">Aluminium smelting</span> Process of extracting aluminium from its oxide alumina

Aluminium smelting is the process of extracting aluminium from its oxide, alumina, generally by the Hall-Héroult process. Alumina is extracted from the ore bauxite by means of the Bayer process at an alumina refinery.

The salt extraction process is an electrolytic method which may be used to extract valuable metals from slag, low-grade ores, or other materials by using molten salts. This method was developed by S. Seetharaman, O. Grinder, L. Teng and X. Ge at the Royal Institute of Technology in Sweden as part of a large Steel Eco-Cycle Project in 2005.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">George Chen</span>

George Z. Chen FRSC is professor of electrochemical technologies at the University of Nottingham. In 1996–1997, together with Derek Fray and Tom Farthing, he co-invented the FFC Cambridge process of electrochemical reduction of oxides to metals, where FFC abbreviates the last names of the inventors.

Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier in the electrolytes as well as in the electrodes (anode and cathode). Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation.

References

  1. 1 2 Takeda, O.; Ouchi, T.; Okabe, T. H. (2020). "Recent Progress in Titanium Extraction and Recycling". Metall. Mater. Trans. B. 51 (4): 1315–1328. doi: 10.1007/s11663-020-01898-6 .
  2. Borchers W., W. Hupperts, W., DRP 150557 "Verfahren der Gewinnung von Titan aus seinen Sauerstoffverbindungen auf elektrolytischem Wege". dpma.de
  3. Rideal, Eric Keightley (1919). Industrial Electrometallurgy, Including Electrolytic and Electrothermal Processes. D. Van Nostrand co. p. 137.
  4. Oki, T.; Inoue, H. (1967). Mem. Fac. Eng., Nagoya Univ. 19: 164–66.{{cite journal}}: Missing or empty |title= (help)
  5. Fray, D. J.; Chen, G. Z.; Farthing, T. W. (2000). "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride". Nature. 407 (6802): 361–4. Bibcode:2000Natur.407..361C. doi:10.1038/35030069. PMID   11014188. S2CID   205008890.

Further reading