FIPS 137

Last updated

FIPS 137, originally issued as FED-STD-1015, is a secure telephony speech encoding standard for Linear Predictive Coding vocoder developed by the United States Department of Defense and finished on November 28, 1984. [1] It was based on the earlier STANAG 4198 [2] promulgated by NATO on February 13, 1984.

FED-STD-1015 was re-designated as Federal Information Processing Standard ( FIPS ) Publication 137, (FIPS PUB 137) on October 20, 1988. [3]

It is also known as "LPC-10".

The codec uses a bit rate of 2.4 kbit/s, requiring 20 MIPS of processing power, 2 kilobytes of RAM and features a frame size of 22.5 ms. Additionally, the codec requires a large lookahead of 90 ms.

Recently an improved version[ according to whom? ] of the standard was introduced. With a longer super frame structure and better VQ quantizer, the bit rate is reduced to 800 bit/s. [4] [ unreliable source? ]

Related Research Articles

In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder.

Speech coding is an application of data compression to digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream.

<span class="mw-page-title-main">Vocoder</span> Voice encryption, transformation, and synthesis device

A vocoder is a category of speech coding that analyzes and synthesizes the human voice signal for audio data compression, multiplexing, voice encryption or voice transformation.

Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model.

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

Personal Digital Cellular (PDC) was a 2G mobile telecommunications standard used exclusively in Japan.

The Adaptive Multi-Rateaudio codec is an audio compression format optimized for speech coding. AMR is a multi-rate narrowband speech codec that encodes narrowband (200–3400 Hz) signals at variable bit rates ranging from 4.75 to 12.2 kbit/s with toll quality speech starting at 7.4 kbit/s.

Enhanced Full Rate or EFR or GSM-EFR or GSM 06.60 is a speech coding standard that was developed in order to improve the quality of GSM.

Full Rate was the first digital speech coding standard used in the GSM digital mobile phone system. It uses linear predictive coding (LPC). The bit rate of the codec is 13 kbit/s, or 1.625 bits/audio sample. The quality of the coded speech is quite poor by modern standards, but at the time of development it was a good compromise between computational complexity and quality, requiring only on the order of a million additions and multiplications per second. The codec is still widely used in networks around the world. Gradually FR will be replaced by Enhanced Full Rate (EFR) and Adaptive Multi-Rate (AMR) standards, which provide much higher speech quality with lower bit rate.

G.728 is an ITU-T standard for speech coding operating at 16 kbit/s. It is officially described as Coding of speech at 16 kbit/s using low-delay code excited linear prediction.

Mixed-excitation linear prediction (MELP) is a United States Department of Defense speech coding standard used mainly in military applications and satellite communications, secure voice, and secure radio devices. Its standardization and later development was led and supported by the NSA and NATO. The current "enhanced" version is known as MELPe.

Harmonic Vector Excitation Coding, abbreviated as HVXC is a speech coding algorithm specified in MPEG-4 Part 3 standard for very low bit rate speech coding. HVXC supports bit rates of 2 and 4 kbit/s in the fixed and variable bit rate mode and sampling frequency of 8 kHz. It also operates at lower bitrates, such as 1.2 - 1.7 kbit/s, using a variable bit rate technique. The total algorithmic delay for the encoder and decoder is 36 ms.

FS-1016 is a deprecated secure telephony speech encoding standard for Code-excited linear prediction (CELP) developed by the United States Department of Defense and finalized February 14, 1991.

Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders. Along with its variants, such as algebraic CELP, relaxed CELP, low-delay CELP and vector sum excited linear prediction, it is currently the most widely used speech coding algorithm. It is also used in MPEG-4 Audio speech coding. CELP is commonly used as a generic term for a class of algorithms and not for a particular codec.

<span class="mw-page-title-main">Secure voice</span> Encrypted voice communication

Secure voice is a term in cryptography for the encryption of voice communication over a range of communication types such as radio, telephone or IP.

Vector sum excited linear prediction (VSELP) is a speech coding method used in several cellular standards. The VSELP algorithm is an analysis-by-synthesis coding technique and belongs to the class of speech coding algorithms known as CELP.

<span class="mw-page-title-main">G.718</span> ITU-T Recommendation

G.718 is an ITU-T Recommendation embedded scalable speech and audio codec providing high quality narrowband speech over the lower bit rates and high quality wideband speech over the complete range of bit rates. In addition, G.718 is designed to be highly robust to frame erasures, thereby enhancing the speech quality when used in Internet Protocol (IP) transport applications on fixed, wireless and mobile networks. Despite its embedded nature, the codec also performs well with both narrowband and wideband generic audio signals. The codec has an embedded scalable structure, enabling maximum flexibility in the transport of voice packets through IP networks of today and in future media-aware networks. In addition, the embedded structure of G.718 will easily allow the codec to be extended to provide a superwideband and stereo capability through additional layers which are currently under development in ITU-T Study Group 16. The bitstream may be truncated at the decoder side or by any component of the communication system to instantaneously adjust the bit rate to the desired value without the need for out-of-band signalling. The encoder produces an embedded bitstream structured in five layers corresponding to the five available bit rates: 8, 12, 16, 24 & 32 kbit/s.

Codec 2 is a low-bitrate speech audio codec that is patent free and open source. Codec 2 compresses speech using sinusoidal coding, a method specialized for human speech. Bit rates of 3200 to 450 bit/s have been successfully created. Codec 2 was designed to be used for amateur radio and other high compression voice applications.

<span class="mw-page-title-main">Audio coding format</span> Digitally coded format for audio signals

An audio coding format is a content representation format for storage or transmission of digital audio. Examples of audio coding formats include MP3, AAC, Vorbis, FLAC, and Opus. A specific software or hardware implementation capable of audio compression and decompression to/from a specific audio coding format is called an audio codec; an example of an audio codec is LAME, which is one of several different codecs which implements encoding and decoding audio in the MP3 audio coding format in software.

References

  1. "FIPS PUB 137, Analog to Digital Conversion of Voice by 2,400 Bit/Second Linear Predictive Coding" (PDF). National Institute of Standards and Technology. Retrieved 2018-08-17.
  2. "PARAMETERS AND CODING CHARACTERISTICS THAT MUST BE COMMON TO ASSURE INTEROPERABILITY OF 2400 BPS LINEAR PREDICTIVE ENCODED DIGITAL SPEECH". North Atlantic Treaty Organization. Retrieved 2018-08-17.
  3. 53 FR 41221
  4. Xianglin, Wang; C.-C. Jay Kuo (May 1998). "An 800 bit/s VQ-based LPC voice coder". The Journal of the Acoustical Society of America. 103 (5): 2778. Bibcode:1998ASAJ..103.2778W. doi:10.1121/1.422247. S2CID   14294667. Archived from the original on 2013-02-23. Retrieved 2007-03-24.