FLASK

Last updated

The Flux Advanced Security Kernel (FLASK) is an operating system security architecture that provides flexible support for security policies. It is a joint venture between the National Security Agency, the University of Utah, and the Secure Computing Corporation project designed to provide a framework for a more secure operating system. Development and implementation started with the Mach microkernel, and has since shifted its focus to the Linux operating system. FLASK is a core framework in security-focused operating systems such as NSA's Security-Enhanced Linux (SELinux), OpenSolaris FMAC and TrustedBSD. This means that SELinux can be thought of as an implementation of FLASK. [1] [2]

Related Research Articles

Security-Enhanced Linux Linux kernel security module

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a mechanism for supporting access control security policies, including mandatory access controls (MAC).

An access-control list (ACL), with respect to a computer file system, is a list of permissions associated with an object. An ACL specifies which users or system processes are granted access to objects, as well as what operations are allowed on given objects. Each entry in a typical ACL specifies a subject and an operation. For instance, if a file object has an ACL that contains (Alice: read,write; Bob: read), this would give Alice permission to read and write the file and Bob to only read it.

Open Sound System

The Open Sound System (OSS) is an interface for making and capturing sound in Unix and Unix-like operating systems. It is based on standard Unix devices system calls. The term also sometimes refers to the software in a Unix kernel that provides the OSS interface; it can be thought of as a device driver for sound controller hardware. The goal of OSS is to allow the writing of sound-based applications that are agnostic of the underlying sound hardware.

Trusted Operating System (TOS) generally refers to an operating system that provides sufficient support for multilevel security and evidence of correctness to meet a particular set of government requirements.

This is a list of operating systems specifically focused on security. General-purpose operating systems may be secure in practice, without being specifically "security-focused".

RSBAC is an open source access control framework for current Linux kernels, which has been in stable production use since January 2000.

Unified Extensible Firmware Interface Specification that defines a software interface between an operating system and platform firmware

The Unified Extensible Firmware Interface (UEFI) is a specification that defines a software interface between an operating system and platform firmware. UEFI replaces the legacy Basic Input/Output System (BIOS) firmware interface originally present in all IBM PC-compatible personal computers, with most UEFI firmware implementations providing support for legacy BIOS services. UEFI can support remote diagnostics and repair of computers, even with no operating system installed.

In computer security, mandatory access control (MAC) refers to a type of access control by which the operating system constrains the ability of a subject or initiator to access or generally perform some sort of operation on an object or target. In practice, a subject is usually a process or thread; objects are constructs such as files, directories, TCP/UDP ports, shared memory segments, IO devices, etc. Subjects and objects each have a set of security attributes. Whenever a subject attempts to access an object, an authorization rule enforced by the operating system kernel examines these security attributes and decides whether the access can take place. Any operation by any subject on any object is tested against the set of authorization rules to determine if the operation is allowed. A database management system, in its access control mechanism, can also apply mandatory access control; in this case, the objects are tables, views, procedures, etc.

These tables provide a comparison of operating systems, of computer devices, as listing general and technical information for a number of widely used and currently available PC or handheld operating systems. The article "Usage share of operating systems" provides a broader, and more general, comparison of operating systems that includes servers, mainframes and supercomputers.

Multilevel security or multiple levels of security (MLS) is the application of a computer system to process information with incompatible classifications, permit access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization. There are two contexts for the use of multilevel security. One is to refer to a system that is adequate to protect itself from subversion and has robust mechanisms to separate information domains, that is, trustworthy. Another context is to refer to an application of a computer that will require the computer to be strong enough to protect itself from subversion and possess adequate mechanisms to separate information domains, that is, a system we must trust. This distinction is important because systems that need to be trusted are not necessarily trustworthy.

W^X is a security feature in operating systems and virtual machines. It is a memory protection policy whereby every page in a process's or kernel's address space may be either writable or executable, but not both. Without such protection, a program can write CPU instructions in an area of memory intended for data and then run those instructions. This can be dangerous if the writer of the memory is malicious. W^X is the Unix-like terminology for a strict use of the general concept of executable space protection, controlled via the mprotect system call.

In computer security, a sandbox is a security mechanism for separating running programs, usually in an effort to mitigate system failures or software vulnerabilities from spreading. It is often used to execute untested or untrusted programs or code, possibly from unverified or untrusted third parties, suppliers, users or websites, without risking harm to the host machine or operating system. A sandbox typically provides a tightly controlled set of resources for guest programs to run in, such as storage and memory scratch space. Network access, the ability to inspect the host system or read from input devices are usually disallowed or heavily restricted.

Openwall Project Linux distribution

The Openwall Project is a source for various software, including Openwall GNU/*/Linux (Owl), a security-enhanced Linux distribution designed for servers. Openwall patches and security extensions have been included into many major Linux distributions.

OS-level virtualization is an operating system paradigm in which the kernel allows the existence of multiple isolated user space instances. Such instances, called containers, Zones, virtual private servers (OpenVZ), partitions, virtual environments (VEs), virtual kernels, or jails, may look like real computers from the point of view of programs running in them. A computer program running on an ordinary operating system can see all resources of that computer. However, programs running inside of a container can only see the container's contents and devices assigned to the container.

AppArmor Linux kernel security module

AppArmor is a Linux kernel security module that allows the system administrator to restrict programs' capabilities with per-program profiles. Profiles can allow capabilities like network access, raw socket access, and the permission to read, write, or execute files on matching paths. AppArmor supplements the traditional Unix discretionary access control (DAC) model by providing mandatory access control (MAC). It has been partially included in the mainline Linux kernel since version 2.6.36 and its development has been supported by Canonical since 2009.

Linux Security Modules (LSM) is a framework that allows the Linux kernel to support a variety of computer security models while avoiding favoritism toward any single security implementation. The framework is licensed under the terms of the GNU General Public License and is a standard part of the Linux kernel since Linux 2.6. AppArmor, SELinux, Smack, and TOMOYO Linux are the currently accepted modules in the official kernel.

A proprietary device driver is a closed-source device driver published only in binary code. In the context of free and open-source software, a closed-source device driver is referred to as a blob or binary blob. The term usually refers to a closed-source kernel module loaded into the kernel of an open-source operating system, and is sometimes also applied to code running outside the kernel, such as system firmware images, microcode updates, or userland programs. The term blob was first used in database management systems to describe a collection of binary data stored as a single entity.

FreeBSD Free Unix-like operating system

FreeBSD is a free and open-source Unix-like operating system descended from the Berkeley Software Distribution (BSD), which was based on Research Unix. The first version of FreeBSD was released in 1993. In 2005, FreeBSD was the most popular open-source BSD operating system, accounting for more than three-quarters of all installed simply, permissively licensed BSD systems.

Kernel-based Virtual Machine Virtualization module in the Linux kernel

Kernel-based Virtual Machine (KVM) is a virtualization module in the Linux kernel that allows the kernel to function as a hypervisor. It was merged into the Linux kernel mainline in kernel version 2.6.20, which was released on February 5, 2007. KVM requires a processor with hardware virtualization extensions, such as Intel VT or AMD-V. KVM has also been ported to other operating systems such as FreeBSD and illumos in the form of loadable kernel modules.

GNU variants are operating systems based upon the GNU operating system. According to the GNU project and others, these also include most operating systems using the Linux kernel and a few others using BSD-based kernels.

References

  1. "Red Hat Enterprise Linux - Red Hat Customer Portal". Redhat.com. Retrieved 2015-04-23.
  2. "Flask: Flux Advanced Security Kernel" . Retrieved 2015-04-23.