Feature-oriented software development (FOSD) is a general paradigm for software generation, where a model of a product line is a tuple of 0-ary and 1-ary functions (program transformations). This page discusses a more abstract concept of models of product lines of product lines (PL**2) called metamodels, and product lines of product lines of product lines called meta-metamodels (PL**3), and further abstract concepts.
A metamodel is a model whose instances are models. [1] A GenVoca model of a product line is a tuple whose components are features (0-ary or 1-ary functions). An extension (a.k.a. delta or refinement) of a model is a "meta-feature", which is a tuple of deltas that can modify an existing product line by modifying existing features and adding new features. As a simple example, consider GenVoca model M that contains three features a-c:
Suppose meta-model MM contains three meta-features AAA-CCC, each of which is a tuple with a single non-identity feature:
where 0 is the null feature. Model M is constructed by adding the meta-features of MM, where + is the composition operation (see FOSD).
MM models a product line of product lines (PL**2). That is, different MM expressions correspond to GenVoca models of different product lines..
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.
In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops. Primitive recursive functions form a strict subset of those general recursive functions that are also total functions.
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that they need not be associative and need not have an identity element.
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.
In mathematics, a tuple is a finite ordered list (sequence) of elements. An n-tuple is a sequence of n elements, where n is a non-negative integer. There is only one 0-tuple, referred to as the empty tuple. An n-tuple is defined inductively using the construction of an ordered pair.
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel-Choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.
Bunched logic is a variety of substructural logic proposed by Peter O'Hearn and David Pym. Bunched logic provides primitives for reasoning about resource composition, which aid in the compositional analysis of computer and other systems. It has category-theoretic and truth-functional semantics, which can be understood in terms of an abstract concept of resource, and a proof theory in which the contexts Γ in an entailment judgement Γ ⊢ A are tree-like structures (bunches) rather than lists or (multi)sets as in most proof calculi. Bunched logic has an associated type theory, and its first application was in providing a way to control the aliasing and other forms of interference in imperative programs. The logic has seen further applications in program verification, where it is the basis of the assertion language of separation logic, and in systems modelling, where it provides a way to decompose the resources used by components of a system.
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:
In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:
In graph theory, an m-ary tree is a rooted tree in which each node has no more than m children. A binary tree is the special case where m = 2, and a ternary tree is another case with m = 3 that limits its children to three.
In mathematical logic, an atomic formula is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives.
In universal algebra, a basis is a structure inside of some (universal) algebras, which are called free algebras. It generates all algebra elements from its own elements by the algebra operations in an independent manner. It also represents the endomorphisms of an algebra by certain indexings of algebra elements, which can correspond to the usual matrices when the free algebra is a vector space.
In computer programming, feature-oriented programming (FOP) or feature-oriented software development (FOSD) is a programming paradigm for program generation in software product lines (SPLs) and for incremental development of programs.
Feature-oriented programming or feature-oriented software development (FOSD) is a general paradigm for program synthesis in software product lines. The feature-oriented programming page is recommended, it explains how an FOSD model of a domain is a tuple of 0-ary functions and a set of 1-ary (unary) functions called features. This page discusses multidimensional generalizations of FOSD models, which are important for compact specifications of complex programs.
In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is
Minimalist grammars are a class of formal grammars that aim to provide a more rigorous, usually proof-theoretic, formalization of Chomskyan Minimalist program than is normally provided in the mainstream Minimalist literature. A variety of particular formalizations exist, most of them developed by Edward Stabler, Alain Lecomte, Christian Retoré, or combinations thereof.
In numerical analysis, the local linearization (LL) method is a general strategy for designing numerical integrators for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear equation at the end of each consecutive interval. The LL method has been developed for a variety of equations such as the ordinary, delayed, random and stochastic differential equations. The LL integrators are key component in the implementation of inference methods for the estimation of unknown parameters and unobserved variables of differential equations given time series of observations. The LL schemes are ideals to deal with complex models in a variety of fields as neuroscience, finance, forestry management, control engineering, mathematical statistics, etc.