Fallacies of distributed computing

Last updated

The fallacies of distributed computing are a set of assertions made by L Peter Deutsch and others at Sun Microsystems describing false assumptions that programmers new to distributed applications invariably make.

Contents

The fallacies

The originally listed fallacies are [1]

  1. The network is reliable;
  2. Latency is zero;
  3. Bandwidth is infinite;
  4. The network is secure;
  5. Topology doesn't change;
  6. There is one administrator;
  7. Transport cost is zero;
  8. The network is homogeneous;

The effects of the fallacies

  1. Software applications are written with little error-handling on networking errors. During a network outage, such applications may stall or infinitely wait for an answer packet, permanently consuming memory or other resources. When the failed network becomes available, those applications may also fail to retry any stalled operations or require a (manual) restart.
  2. Ignorance of network latency, and of the packet loss it can cause, induces application- and transport-layer developers to allow unbounded traffic, greatly increasing dropped packets and wasting bandwidth.
  3. Ignorance of bandwidth limits on the part of traffic senders can result in bottlenecks.
  4. Complacency regarding network security results in being blindsided by malicious users and programs that continually adapt to security measures.
  5. Changes in network topology can have effects on both bandwidth and latency issues, and therefore can have similar problems.
  6. Multiple administrators, as with subnets for rival companies, may institute conflicting policies of which senders of network traffic must be aware in order to complete their desired paths.
  7. The "hidden" costs of building and maintaining a network or subnet are non-negligible and must consequently be noted in budgets to avoid vast shortfalls.
  8. If a system assumes a homogeneous network, then it can lead to the same problems that result from the first three fallacies.

History

The list of fallacies originated at Sun Microsystems. L. Peter Deutsch, one of the original Sun "Fellows", first created a list of seven fallacies in 1994; incorporating four fallacies Bill Joy and Dave Lyon had already identified in "The Fallacies of Networked Computing". [2] Around 1997, James Gosling, another Sun Fellow and the inventor of Java, added the eighth fallacy. [2]

In an episode of "Software Engineering Radio" [3] Peter Deutsch added a ninth fallacy: "It's really an expansion of number 4. It extends beyond the boundaries of the physical network. ... The party you are communicating with is trustworthy."

See also

Related Research Articles

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

<span class="mw-page-title-main">James Gosling</span> Canadian computer scientist (born 1955)

James Gosling is a Canadian computer scientist, best known as the founder and lead designer behind the Java programming language.

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. Between network devices, VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

<span class="mw-page-title-main">Anycast</span> Network addressing and routing methodology

Anycast is a network addressing and routing methodology in which a single IP address is shared by devices in multiple locations. Routers direct packets addressed to this destination to the location nearest the sender, using their normal decision-making algorithms, typically the lowest number of BGP network hops. Anycast routing is widely used by content delivery networks such as web and name servers, to bring their content closer to end users.

L Peter Deutsch is the founder of Aladdin Enterprises and creator of Ghostscript, a free software PostScript and PDF interpreter.

<span class="mw-page-title-main">Content delivery network</span> Layer in the internet ecosystem addressing bottlenecks

A content delivery network or content distribution network (CDN) is a geographically distributed network of proxy servers and their data centers. The goal is to provide high availability and performance ("speed") by distributing the service spatially relative to end users. CDNs came into existence in the late 1990s as a means for alleviating the performance bottlenecks of the Internet as the Internet was starting to become a mission-critical medium for people and enterprises. Since then, CDNs have grown to serve a large portion of the Internet content today, including web objects, downloadable objects, applications, live streaming media, on-demand streaming media, and social media sites.

<span class="mw-page-title-main">Ring network</span> Network topology in which nodes form a ring

A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node – a ring. Data travels from node to node, with each node along the way handling every packet.

Resilient Packet Ring (RPR), as defined by IEEE standard 802.17, is a protocol designed for the transport of data traffic over optical fiber ring networks. The standard began development in November 2000 and has undergone several amendments since its initial standard was completed in June 2004. The amended standards are 802.17a through 802.17d, the last of which was adopted in May 2011. It is designed to provide the resilience found in SONET and Synchronous Digital Hierarchy networks but, instead of setting up circuit oriented connections, provides a packet based transmission, in order to increase the efficiency of Ethernet and IP services.

An overlay network is a computer network that is layered on top of another network. The concept of overlay networking is distinct from the traditional model of OSI layered networks, and almost always assumes that the underlay network is an IP network of some kind.

Network performance refers to measures of service quality of a network as seen by the customer.

A tuple space is an implementation of the associative memory paradigm for parallel/distributed computing. It provides a repository of tuples that can be accessed concurrently. As an illustrative example, consider that there are a group of processors that produce pieces of data and a group of processors that use the data. Producers post their data as tuples in the space, and the consumers then retrieve data from the space that match a certain pattern. This is also known as the blackboard metaphor. Tuple space may be thought as a form of distributed shared memory.

Packet loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

Bandwidth management is the process of measuring and controlling the communications on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).

In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.

The Time-Triggered Ethernet standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications and integrated modular avionics (IMA) architectures. SAE International released SAE AS6802 in November 2011.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

The STC104 switch, also known as the C104 switch in its early phases, is an asynchronous packet-routing chip that was designed for building high-performance point-to-point computer communication networks. It was developed by INMOS in the 1990s and was the first example of a general-purpose production packet routing chip. It was also the first routing chip to implement wormhole routing, to decouple packet size from the flow-control protocol, and to implement interval and two-phase randomized routing.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References

  1. Wilson, Gareth (2015-02-06). "The Eight Fallacies of Distributed Computing - Tech Talk". Archived from the original on 2017-11-07. Retrieved 2017-06-18. The Eight Fallacies are something that I heard about at a Java One conference a long time ago by a guy named James Gosling. He attributed them to someone named Peter Deutsch and basically a bunch of guys at Sun had come up with a list of these fallacies.
  2. 1 2 Van Den Hoogen, Ingrid (2004-01-08). "Deutsch's Fallacies, 10 Years After". Archived from the original on 2007-08-11. Retrieved 2005-12-03.
  3. L. Peter Deutsch on the Fallacies of Distributed Computing. 2021-07-27. Event occurs at 57:10.