Fast Local Internet Protocol

Last updated

The Fast Local Internet Protocol (FLIP) is a communication protocol for LAN and WAN, conceived for distributed applications. FLIP was designed at the Vrije Universiteit Amsterdam to support remote procedure call (RPC) in the Amoeba distributed operating system. [1]

Contents

Comparison to TCP/IP

In the OSI model, FLIP occupies the network layer (3), thus replacing IP, but it also obviates the need for a transport layer (4) protocol like TCP.

Layers of functionality in OSI, TCP/IP, and FLIP. [1]
LayerOSITCP/IPFLIP
7ApplicationUser-definedUser-defined
6PresentationUser-definedAmoeba Interface Language (AIL)
5SessionNot usedRPC and Group communication
4TransportTCP or UDPNot needed
3NetworkIPFLIP
2Data LinkE.g., EthernetE.g., Ethernet
1PhysicalE.g., Coaxial cableE.g., Coaxial cable

Properties

FLIP is a connectionless protocol designed to support transparency (with respect to the underlying network layers of the OSI model: 2. data link and 1. physical), efficient RPC, group communication, secure communication and easy network management. The following FLIP properties helps to achieve the requirements of distributed computing: [1]

  1. FLIP identifies entities with a location-independent 64-bit identifier called Network Service Access Points (NSAPs). An entity can, for example, be a process; contrary to the IP protocol where an IP address identify a host.
  2. FLIP uses a one way mapping between the “private” address, used to register an endpoint of a network connection, and the “public” address used to advertise the endpoint.
  3. FLIP routes messages based on NSAP (transparency).
  4. FLIP discovers routes on demand.
  5. FLIP uses a bit in the message header to request transmission of sensitive messages across trusted networks.

See also

Related Research Articles

<span class="mw-page-title-main">Asynchronous Transfer Mode</span> Digital telecommunications protocol for voice, video, and data

Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by American National Standards Institute (ANSI) and ITU-T for digital transmission of multiple types of traffic. ATM was developed to meet the needs of the Broadband Integrated Services Digital Network as defined in the late 1980s, and designed to integrate telecommunication networks. It can handle both traditional high-throughput data traffic and real-time, low-latency content such as telephony (voice) and video. ATM provides functionality that uses features of circuit switching and packet switching networks by using asynchronous time-division multiplexing.

The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). In the development of this networking model, early versions of it were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.

A Network Service Access Point address, defined in ISO/IEC 8348, is an identifying label for a Service Access Point (SAP) used in OSI networking.

<span class="mw-page-title-main">OSI model</span> Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model that 'provides a common basis for the coordination of [ISO] standards development for the purpose of systems interconnection'. In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

<span class="mw-page-title-main">Protocol data unit</span> Unit of information transmitted over a computer network

In telecommunications, a protocol data unit (PDU) is a single unit of information transmitted among peer entities of a computer network. It is composed of protocol-specific control information and user data. In the layered architectures of communication protocol stacks, each layer implements protocols tailored to the specific type or mode of data exchange.

Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behaviour. Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more.

<span class="mw-page-title-main">X.25</span> Standard protocol suite for packet switched wide area network (WAN) communication

X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee in a series of drafts and finalized in a publication known as The Orange Book in 1976.

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.

Xerox Network Systems (XNS) is a computer networking protocol suite developed by Xerox within the Xerox Network Systems Architecture. It provided general purpose network communications, internetwork routing and packet delivery, and higher level functions such as a reliable stream, and remote procedure calls. XNS predated and influenced the development of the Open Systems Interconnection (OSI) networking model, and was very influential in local area networking designs during the 1980s.

In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers.

<span class="mw-page-title-main">Transport layer</span> Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

An application layer is an abstraction layer that specifies the shared communications protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different.

<span class="mw-page-title-main">KNX</span> Standard in building automation

KNX is an open standard for commercial and domestic building automation. KNX devices can manage lighting, blinds and shutters, HVAC, security systems, energy management, audio video, white goods, displays, remote control, etc. KNX evolved from three earlier standards; the European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus. It can use twisted pair, powerline, RF, or IP links. On this network, the devices form distributed applications and tight interaction is possible. This is implemented via interworking models with standardised datapoint types and objects, modelling logical device channels.

A Service Access Point (SAP) is an identifying label for network endpoints used in Open Systems Interconnection (OSI) networking.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.

A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any kind of variation of a physical quantity. The protocol defines the rules, syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

References

  1. 1 2 3 M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and Andrew S. Tanenbaum. 1993. FLIP: an internetwork protocol for supporting distributed systems. ACM Trans. Comput. Syst. 11, 1 (Feb. 1993), 73–106. https://doi.org/10.1145/151250.151253