Communication protocol | |
Abbreviation | IL |
---|---|
Developer(s) | Bell Labs |
OSI layer | Transport layer (4) |
Internet protocol suite |
---|
Application layer |
Transport layer |
Internet layer |
Link layer |
The Internet Link protocol or IL is a connection-based transport-layer protocol designed at Bell Labs originally as part of the Plan 9 operating system and is used to carry 9P. It is assigned the Internet Protocol number of 40. It is similar to TCP but much simpler.
Its main features are:
As of the Fourth Edition of Plan 9, 2003, IL is deprecated in favor of TCP/IP because it doesn't handle long-distance connections well. [1]
Offset | Octet | 0 | 1 | 2 | 3 | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octet | Bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||||||||||||||||
0 | 0 | Version and header length | Type of service | Packet length | |||||||||||||||||||||||||||||||||||||||||||||
4 | 32 | Identification | Fragment information | ||||||||||||||||||||||||||||||||||||||||||||||
8 | 64 | Time to live | Protocol | Header checksum | |||||||||||||||||||||||||||||||||||||||||||||
12 | 96 | IP source | |||||||||||||||||||||||||||||||||||||||||||||||
16 | 128 | IP destination | |||||||||||||||||||||||||||||||||||||||||||||||
20 | 160 | Checksum including header | Packet length | ||||||||||||||||||||||||||||||||||||||||||||||
24 | 192 | Packet type | Special | Src port | |||||||||||||||||||||||||||||||||||||||||||||
28 | 224 | Dst port | Sequence id↴ | ||||||||||||||||||||||||||||||||||||||||||||||
34 | 272 | ↪Acked sequence |
structIPIL{bytevihl;/* Version and header length */bytetos;/* Type of service */bytelength[2];/* packet length */byteid[2];/* Identification */bytefrag[2];/* Fragment information */bytettl;/* Time to live */byteproto;/* Protocol */bytecksum[2];/* Header checksum */bytesrc[4];/* Ip source */bytedst[4];/* Ip destination */byteilsum[2];/* Checksum including header */byteillen[2];/* Packet length */byteiltype;/* Packet type */byteilspec;/* Special */byteilsrc[2];/* Src port */byteildst[2];/* Dst port */byteilid[4];/* Sequence id */byteilack[4];/* Acked sequence */};
The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address. For example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.
Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.
The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.
The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.
In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.
In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.
Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.
The Serial Line Internet Protocol (SLIP) is an encapsulation of the Internet Protocol designed to work over serial ports and router connections. It is documented in RFC 1055. On personal computers, SLIP has largely been replaced by the Point-to-Point Protocol (PPP), which is better engineered, has more features, and does not require its IP address configuration to be set before it is established. On microcontrollers, however, SLIP is still the preferred way of encapsulating IP packets, due to its very small overhead.
In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.
The Point-to-Point Protocol over Ethernet (PPPoE) is a network protocol for encapsulating Point-to-Point Protocol (PPP) frames inside Ethernet frames. It appeared in 1999, in the context of the boom of DSL as the solution for tunneling packets over the DSL connection to the ISP's IP network, and from there to the rest of the Internet. A 2005 networking book noted that "Most DSL providers use PPPoE, which provides authentication, encryption, and compression." Typical use of PPPoE involves leveraging the PPP facilities for authenticating the user with a username and password, via the PAP protocol or via CHAP. PAP was dominant in 2007 but service providers have been transitioning to the more secure CHAP, because PAP is a plain-text protocol. Around 2000, PPPoE was also starting to become a replacement method for talking to a modem connected to a computer or router over an Ethernet LAN displacing the older method, which had been USB. This use-case, connecting routers to modems over Ethernet is still extremely common today.
In computer networking, Layer 2 Tunneling Protocol (L2TP) is a tunneling protocol used to support virtual private networks (VPNs) or as part of the delivery of services by ISPs. It uses encryption ('hiding') only for its own control messages, and does not provide any encryption or confidentiality of content by itself. Rather, it provides a tunnel for Layer 2, and the tunnel itself may be passed over a Layer 3 encryption protocol such as IPsec.
In computer networking, the Datagram Congestion Control Protocol (DCCP) is a message-oriented transport layer protocol. DCCP implements reliable connection setup, teardown, Explicit Congestion Notification (ECN), congestion control, and feature negotiation. The IETF published DCCP as RFC 4340, a proposed standard, in March 2006. RFC 4336 provides an introduction.
A ping of death is a type of attack on a computer system that involves sending a malformed or otherwise malicious ping to a computer. In this attack, a host sends hundreds of ping requests with a packet size that is large or illegal to another host to try to take it offline or to keep it preoccupied responding with ICMP Echo replies.
GPRS Tunnelling Protocol (GTP) is a group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS, LTE and 5G NR radio networks. In 3GPP architectures, GTP and Proxy Mobile IPv6 based interfaces are specified on various interface points.
The PARC Universal Packet was one of the two earliest internetworking protocol suites; it was created by researchers at Xerox PARC in the mid-1970s. The entire suite provided routing and packet delivery, as well as higher-level functions such as a reliable byte stream, along with numerous applications.
Robust Header Compression (ROHC) is a standardized method to compress the IP, UDP, UDP-Lite, RTP, and TCP headers of Internet packets.
A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.
An idle scan is a TCP port scan method for determining what services are open on a target computer without leaving traces pointing back at oneself. This is accomplished by using packet spoofing to impersonate another computer so that the target believes it's being accessed by the zombie. The target will respond in different ways depending on whether the port is open, which can in turn be detected by querying the zombie.
IP fragmentation attacks are a kind of computer security attack based on how the Internet Protocol (IP) requires data to be transmitted and processed. Specifically, it invokes IP fragmentation, a process used to partition messages from one layer of a network into multiple smaller payloads that can fit within the lower layer's protocol data unit (PDU). Every network link has a maximum size of messages that may be transmitted, called the maximum transmission unit (MTU). If the SDU plus metadata added at the link layer exceeds the MTU, the SDU must be fragmented. IP fragmentation attacks exploit this process as an attack vector.
The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.
We are phasing out the IL protocol since it doesn't handle long-distance connections well (and long-distance networks don't handle it well, either). IL is still used by fs(4) but TCP has become the standard protocol for all other services.