Fermi point

Last updated

The term Fermi point has two applications but refers to the same phenomena (special relativity): [1]

Contents

For both applications count that the symmetry between particles and anti-particles in weak interactions is violated:
At this point the particle energy E = cp is zero. [2]
In nanotechnology this concept can be applied to electron behavior. [3] An electron when as single particle is a fermion obeying the Pauli exclusion principle.

Fermi point (quantum field theory)

Fermionic systems that have a Fermi surface (FS) belong to a universality class in quantum field theory. Any collection of fermions with weak repulsive interactions belongs to this class. At the Fermi point, the break of symmetry can be explained by assuming a vortex or singularity will appear as a result of the spin of a fermi particle (quasiparticle, fermion) in one dimension of the three-dimensional momentum space. [2]

Fermi point (nanoscience)

A semiconductor bandgap structure. At the Fermi point, the bandgap of a carbon nanotube effectively disappears. Semiconductor band structure (lots of bands 2).svg
A semiconductor bandgap structure. At the Fermi point, the bandgap of a carbon nanotube effectively disappears.

The Fermi point is one particular electron state. The Fermi point refers to an event chirality of electrons is involved and the diameter of a carbon nanotube for which the nanotube becomes metallic. As the structure of a carbon nanotube determines the energy levels that the carbon's electrons may occupy, the structure affects macroscopic properties of the nanotube structure, most notably electrical and thermal conductivity. [5]

Flat graphite is a conductor except when rolled up into small cylinders. This circular structure inhibits the internal flow of electrons and the graphite becomes a semiconductor; a transition point forms between the valence band and conduction band. This point is called the Fermi point. If the diameter of the carbon nanotube is sufficiently great, the necessary transition phase disappears and the nanotube may be considered a conductor. [6] [7]

See also

Notes

  1. Effective gravity and quantum field theory in superfluids
  2. 1 2 Volovik, G. E. (1999). "Field theory in superfluid 3He: What are the lessons for particle physics, gravity, and high-temperature superconductivity?". Proceedings of the National Academy of Sciences. 96 (11): 6042–6047. arXiv: cond-mat/9812381 . Bibcode:1999PNAS...96.6042V. doi: 10.1073/pnas.96.11.6042 . ISSN   0027-8424. PMC   26832 . PMID   10339538.
  3. "METFET" (PDF). Archived from the original (PDF) on 2010-06-11. Retrieved 2009-06-16.
  4. Collins, Philip G. and Avouris, Phaedon. Scientific American. anotubes for Electronics. Retrieved April 5, 2006.
  5. Sundaram, Vivek. Dept. of Mechanical Engineering University of Colorado at Boulder. CARBON NANOTUBES: One of the best discoveries man has ever made in Science Archived 2006-09-09 at the Wayback Machine . Retrieved April 1, 2006.
  6. Gross, Michael. chembytes e-zine. The smallest revolution. Retrieved April 1, 2006.
  7. Carbon Nanotubes and Nanotube Transistors Archived 2006-07-16 at the Wayback Machine .

Related Research Articles

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.

In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions. Some scientists hypothesize that a fifth force might exist, but these hypotheses remain speculative.

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions, as well as the fundamental bosons, which generally are force particles that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin 1/2, spin 3/2, etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Weak interaction</span> Interaction between subatomic particles

In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavourdynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neutrons or other fermions. The term is mainly used in astrophysics to refer to dense stellar objects where gravitational pressure is so extreme that quantum mechanical effects are significant. This type of matter is naturally found in stars in their final evolutionary states, such as white dwarfs and neutron stars, where thermal pressure alone is not enough to avoid gravitational collapse.

<span class="mw-page-title-main">Fermi liquid theory</span> Theoretical model of interacting fermions

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures. The interactions among the particles of the many-body system do not need to be small. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

<span class="mw-page-title-main">Fermionic condensate</span> State of matter

A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar conditions. The earliest recognized fermionic condensate described the state of electrons in a superconductor; the physics of other examples including recent work with fermionic atoms is analogous. The first atomic fermionic condensate was created by a team led by Deborah S. Jin in 2003.

In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.

<span class="mw-page-title-main">Luttinger liquid</span> Theoretical model describing interacting fermions in a one-dimensional conductor

A Luttinger liquid, or Tomonaga–Luttinger liquid, is a theoretical model describing interacting electrons in a one-dimensional conductor. Such a model is necessary as the commonly used Fermi liquid model breaks down for one dimension.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern Standard Model of particle physics.

In mesoscopic physics, ballistic conduction is the unimpeded flow of charge carriers, or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey Newton's second law of motion at non-relativistic speeds.

<span class="mw-page-title-main">Optical properties of carbon nanotubes</span> Optical properties of the material

The optical properties of carbon nanotubes are highly relevant for materials science. The way those materials interact with electromagnetic radiation is unique in many respects, as evidenced by their peculiar absorption, photoluminescence (fluorescence), and Raman spectra.

<span class="mw-page-title-main">Superfluid vacuum theory</span> Theory of fundamental physics

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is viewed as superfluid or as a Bose–Einstein condensate (BEC).

<span class="mw-page-title-main">Weyl semimetal</span>

Weyl fermions are massless chiral fermions embodying the mathematical concept of a Weyl spinor. Weyl spinors in turn play an important role in quantum field theory and the Standard Model, where they are a building block for fermions in quantum field theory. Weyl spinors are a solution to the Dirac equation derived by Hermann Weyl, called the Weyl equation. For example, one-half of a charged Dirac fermion of a definite chirality is a Weyl fermion.

GrigoryEfimovich Volovik is a Russian theoretical physicist, who specializes in condensed matter physics. He is known for the Volovik effect.