Fiber functor

Last updated

In category theory, a branch of mathematics, a fiber functor is a faithful k-linear tensor functor from a tensor category to the category of finite-dimensional k-vector spaces. [1]

Contents

Definition

A fiber functor (or fibre functor) is a loose concept which has multiple definitions depending on the formalism considered. One of the main initial motivations for fiber functors comes from Topos theory. [2] Recall a topos is the category of sheaves over a site. If a site is just a single object, as with a point, then the topos of the point is equivalent to the category of sets, . If we have the topos of sheaves on a topological space , denoted , then to give a point in is equivalent to defining adjoint functors

The functor sends a sheaf on to its fiber over the point ; that is, its stalk. [3]

From covering spaces

Consider the category of covering spaces over a topological space , denoted . Then, from a point there is a fiber functor [4]

sending a covering space to the fiber . This functor has automorphisms coming from since the fundamental group acts on covering spaces on a topological space . In particular, it acts on the set . In fact, the only automorphisms of come from .

With étale topologies

There is an algebraic analogue of covering spaces coming from the étale topology on a connected scheme . The underlying site consists of finite étale covers, which are finite [5] [6] flat surjective morphisms such that the fiber over every geometric point is the spectrum of a finite étale -algebra. For a fixed geometric point , consider the geometric fiber and let be the underlying set of -points. Then,

is a fiber functor where is the topos from the finite étale topology on . In fact, it is a theorem of Grothendieck the automorphisms of form a profinite group, denoted , and induce a continuous group action on these finite fiber sets, giving an equivalence between covers and the finite sets with such actions.

From Tannakian categories

Another class of fiber functors come from cohomological realizations of motives in algebraic geometry. For example, the De Rham cohomology functor sends a motive to its underlying de-Rham cohomology groups . [7]

See also

Related Research Articles

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin.

This is a glossary of properties and concepts in category theory in mathematics.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In mathematics, the fundamental group scheme is a group scheme canonically attached to a scheme over a Dedekind scheme. It is a generalisation of the étale fundamental group. Although its existence was conjectured by Alexander Grothendieck, the first proof if its existence is due, for schemes defined over fields, to Madhav Nori. A proof of its existence for schemes defined over Dedekind schemes is due to Marco Antei, Michel Emsalem and Carlo Gasbarri.

This is a glossary of algebraic geometry.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself. If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.

In algebraic geometry, an ℓ-adic sheaf on a Noetherian scheme X is an inverse system consisting of -modules in the étale topology and inducing .

References

  1. M Muger (January 2006). "Abstract Duality Theory for Symmetric Tensor" (PDF). Math.ru.nl. Retrieved 2013-11-11.
  2. Grothendieck, Alexander. "SGA 4 Exp IV" (PDF). pp. 46–54. Archived (PDF) from the original on 2020-05-01.
  3. Cartier, Pierre. "A Mad Day's Work: From Grothendieck to Connes and Kontsevich – The Evolution of Concepts of Space and Symmetry" (PDF). p. 400 (12 in pdf). Archived (PDF) from the original on 5 Apr 2020.
  4. Szamuely. "Heidelberg Lectures on Fundamental Groups" (PDF). p. 2. Archived (PDF) from the original on 5 Apr 2020.
  5. "Galois Groups and Fundamental Groups" (PDF). pp. 15–16. Archived (PDF) from the original on 6 Apr 2020.
  6. Which is required to ensure the étale map is surjective, otherwise open subschemes of could be included.
  7. Deligne; Milne. "Tannakian Categories" (PDF). p. 58.{{cite web}}: CS1 maint: url-status (link)