First-surface mirror

Last updated
Example of a second-surface mirror (left) and a first-surface mirror (right). In both pictures, the pen is touching the surface of the mirror. "Ghosting" (a faint reflection from the first layer) is visible in the left image (more obvious when this file is displayed at full-size). Specchi.jpg
Example of a second-surface mirror (left) and a first-surface mirror (right). In both pictures, the pen is touching the surface of the mirror. "Ghosting" (a faint reflection from the first layer) is visible in the left image (more obvious when this file is displayed at full-size).
Technicians assemble 6 of the 18 first-surface mirrors used in the James Webb Space Telescope. Six of the 18 James Webb Space Telescope mirror segments.jpg
Technicians assemble 6 of the 18 first-surface mirrors used in the James Webb Space Telescope.

A first-surface mirror or front-surface mirror (also commonly abbreviated FS mirror or FSM) is a mirror with the reflective surface being above a backing, as opposed to the conventional, second-surface mirror with the reflective surface behind a transparent substrate such as glass or acrylic. [1]

Historically, the bronze mirror, an FSM type, was standard from ancient times until relatively recent centuries. These were simply highly polished pieces of bronze or other metals, usually small and round, and designed for a person to see their face.

First-surface mirrors are now made for applications requiring a strict reflection without a ghosting effect as seen with a second-surface mirror, where a faint secondary reflection could be observed, coming from the front surface of the glass. This includes most optics applications where light is being manipulated in a specific manner. Reflecting telescopes, rear-projection televisions, periscopes, non-reversing mirrors, high-quality kaleidoscopes, and the animation process.

In cases where the mirror is subjected to extreme cold (as low as 33 K as in the James Webb Space Telescope), a polished pure beryllium mirror is used without a first-surface coating in order to eliminate deformations caused by differing coefficients of thermal expansion.

First-surface mirrors are more sensitive than back-surface mirrors and may be damaged by cleaning as the reflective surface is not protected by glass. [2]

Silvering

The "silvering" on a front-surface mirror is usually aluminium for visible light and gold for infrared radiation.

Related Research Articles

<span class="mw-page-title-main">Mirror</span> Object that reflects an image

A mirror or looking glass is an object that reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the direction of the image in an equal yet opposite angle from which the light shines upon it. This allows the viewer to see themselves or objects behind them, or even objects that are at an angle from them but out of their field of view, such as around a corner. Natural mirrors have existed since prehistoric times, such as the surface of water, but people have been manufacturing mirrors out of a variety of materials for thousands of years, like stone, metals, and glass. In modern mirrors, metals like silver or aluminium are often used due to their high reflectivity, applied as a thin coating on glass because of its naturally smooth and very hard surface.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Amateur telescope making</span>

Amateur telescope making is the activity of building telescopes as a hobby, as opposed to being a paid professional. Amateur telescope makers build their instruments for personal enjoyment of a technical challenge, as a way to obtain an inexpensive or personally customized telescope, or as a research tool in the field of astronomy. Amateur telescope makers are usually a sub-group in the field of amateur astronomy.

<span class="mw-page-title-main">Binoculars</span> Pair of telescopes mounted side-by-side

Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes when viewing distant objects. Most binoculars are sized to be held using both hands, although sizes vary widely from opera glasses to large pedestal-mounted military models.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Reflection (physics)</span> "Bouncing back" of waves at an interface

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected.

<span class="mw-page-title-main">Optical coating</span>

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Speculum metal</span> Highly reflective copper-tin alloy

Speculum metal is a mixture of around two-thirds copper and one-third tin, making a white brittle alloy that can be polished to make a highly reflective surface. It was used historically to make different kinds of mirrors from personal grooming aids to optical devices until it was replaced by more modern materials such as metal-coated glass mirrors.

<span class="mw-page-title-main">Optical filter</span> Filters which selectively transmit specific colors

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

<span class="mw-page-title-main">Anti-reflective coating</span> Optical coating that reduces reflection

An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.

<span class="mw-page-title-main">Projection screen</span> Apparatus for displaying a projected image

A projection screen is an installation consisting of a surface and a support structure used for displaying a projected image for the view of an audience. Projection screens may be permanently installed, as in a movie theater; painted on the wall; or portable with tripod or floor rising models as in a conference room or other non-dedicated viewing space. Another popular type of portable screens are inflatable screens for outdoor movie screening.

Silvering is the chemical process of coating a non-conductive substrate such as glass with a reflective substance, to produce a mirror. While the metal is often silver, the term is used for the application of any reflective metal.

X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.

<span class="mw-page-title-main">Bronze mirror</span>

Bronze mirrors preceded the glass mirrors of today. This type of mirror, sometimes termed a copper mirror, has been found by archaeologists among elite assemblages from various cultures, from Etruscan Italy to Japan. Typically they are round and rather small, in the West with a handle, in East Asia with a knob to hold at the back, often with a loop for a cord, or silk tassel. Some were fitted with small stands, and others had a hinged protective cover.

<span class="mw-page-title-main">Mangin mirror</span> Catadioptric reflector for search lights

In optics, a Mangin mirror is a negative meniscus lens with the reflective surface on the rear side of the glass forming a curved mirror that reflects light without spherical aberration if certain conditions are met. This reflector was invented in 1874 by a French officer Alphonse Mangin as an improved catadioptric reflector for search lights and is also used in other optical devices.

<span class="mw-page-title-main">Plane mirror</span> Mirror with a flat reflecting surface

A plane mirror is a mirror with a flat (planar) reflective surface. For light rays striking a plane mirror, the angle of reflection equals the angle of incidence. The angle of the incidence is the angle between the incident ray and the surface normal. Therefore, the angle of reflection is the angle between the reflected ray and the normal and a collimated beam of light does not spread out after reflection from a plane mirror, except for diffraction effects.

<span class="mw-page-title-main">Infinity mirror</span> Parallel or angled mirrors, creating reflections that appear to recede to infinity

The infinity mirror is a configuration of two or more parallel or angled mirrors, which are arranged to create a series of smaller and smaller reflections that appear to recede to infinity. Often the front mirror of an infinity mirror is half-silvered, but this is not required to produce the effect. A similar appearance in artworks has been called the Droste effect. Infinity mirrors are sometimes used as room accents or in works of art.

References

  1. Paschotta, Dr Rüdiger. "First Surface Mirrors". www.rp-photonics.com. Retrieved 2022-08-30.
  2. http://google.co.uk/books/edition/Optics_for_Engineers/11iz-UKrWf4C?pg=PA43&gbpv=1